Investigation of accuracy of detailed verified by unmanned aerial vehicles with RTK system; The example of Ortakent-Bodrum Area

Main Article Content

Hazal Altuntabak
Ercenk Ata

Abstract

There has always been a sense of adoption of human beings and the knowledge to define their types, boundaries and areas, especially in terms of the immovables they own. It is known from past to present those measurements are difficult and require effort and time. However, with the developing technology, measuring systems have been renewed and new methods have emerged. With the new systems, project time and cost savings were achieved. Although the production of orthometric maps has accelerated thanks to the advances in remote sensing and photogrammetry, their accuracy compared to terrestrial measurements is questioned. In this study, it is aimed to investigate whether there are differences between the location information of the orthometric map produced by Unmanned Aerial Vehicles (UAV) and the location information of the data produced by Global Navigation Satellite Systems (GNSS), and to investigate the reasons for these differences, if any. The study area covers in Ortakent, Bodrum-Muğla. One of the most important features of the UAV used in the project is that it has a Real Time Kinematic GNSS system (RTK-GNSS). After measuring with UAV, the Digital Surface Model and orthophoto was produced. After the measurements made with the GNSS, triangulation was made and the undulations were subtracted and orthometric heights were obtained. Thus, the differences between the obtained values ​​were determined by measuring with both the UAV and the GNSS system. These differences are very small like cm. It has been seen that the photogrammetric values ​​created with Ground Control Points are more accurate than the photogrammetric values ​​created without Ground Control Points.

Downloads

Download data is not yet available.

Article Details

How to Cite
Altuntabak, H., & Ata, E. (2022). Investigation of accuracy of detailed verified by unmanned aerial vehicles with RTK system; The example of Ortakent-Bodrum Area. Advanced UAV, 2(1), 1–10. Retrieved from https://publish.mersin.edu.tr/index.php/uav/article/view/244
Section
Articles

References

Yakar, M., & Doğan, Y. (2018). Gis and three-dimensional modeling for cultural heritages. International Journal of Engineering and Geosciences, 3(2), 50-55.

Avşar, E. Ö. (2006). Tarihi Köprülerin Digital Fotogrametri Tekniği Yardımıyla Modellenmesi. Master Thesis. İstanbul Teknik Üniversitesi. İstanbul 9 p.

Yilmaz, H. M., Yakar, M., Mutluoglu, O., Kavurmaci, M. M., & Yurt, K. (2012). Monitoring of soil erosion in Cappadocia region (Selime-Aksaray-Turkey). Environmental Earth Sciences, 66(1), 75-81.

Yakar, M., Murat Yılmaz, H., Yıldız, F., Zeybek, M., Şentürk, H., & Çelik, H. (2009). Silifke-Mersin Bölgesinde Roma Dönemi Eserlerinin 3 Boyutlu Modelleme Çalışması ve Animasyonu. Jeodezi ve Jeoinformasyon Dergisi, (101).

Ulvi, A., Yakar, M., Yiğit, A. Y. & Kaya Y. (2020). İHA ve Yersel Fotogrametrik Teknikler Kullanarak Aksaray Kızıl Kilisenin 3B Modelinin ve Nokta Bulutunun Elde Edilmesi. Geomatik, 5 (1), 19-26.

Mirdan, O., & Yakar, M. (2017). Tarihi eserlerin İnsansız Hava Aracı ile modellenmesinde karşılaşılan sorunlar. Geomatik, 2(3), 118-125.

Alptekin, A., & Yakar, M. (2021). 3D model of Üçayak Ruins obtained from point clouds. Mersin Photogrammetry Journal, 3(2), 37-40.

Kusak, L., Unel, F. B., Alptekin, A., Celik, M. O., & Yakar, M. (2021). Apriori association rule and K-means clustering algorithms for interpretation of pre-event landslide areas and landslide inventory mapping. Open Geosciences, 13(1), 1226-1244.

Yakar, M., Yılmaz, H. M., Güleç, S. A., & Korumaz, M. (2009). Advantage of digital close range photogrammetry in drawing of muqarnas in architecture.

Yakar, M., & Doğan, Y. (2017). Mersin Silifke Mezgit Kale Anıt Mezarı Fotogrametrik Rölöve Alımı Ve Üç Boyutlu Modelleme Çalışması. Geomatik, 2(1), 11-17.

Alptekin, A., & Yakar, M. (2020). Heyelan bölgesinin İHA kullanarak modellenmesi. Türkiye İnsansız Hava Araçları Dergisi, 2(1), 17-21.

Çoşkun Z., (2012). Düşük Maliyetli İHA (İnsansız Hava Aracı) ile Mobil Harita Üretiminin Bugünü ve Geleceği. Harita Teknolojileri Elektronik Dergisi. 4(2). 11-18.

Çelik, M. Ö., Alptekin, A., Ünel, F. B., Kuşak, L., & Kanun, E. (2020). The effect of different flight heights on generated digital products: DSM and Orthophoto. Mersin Photogrammetry Journal, 2(1), 1-9.

Yakar, M., & Doğan, Y. (2017). Silifke Aşağı Dünya Obruğunun İHA Kullanılarak Üç Boyutlu Modellenmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17(4), 94-101.

Yaşayan. A., Uysal. M., Varlık. A., Avdan. U. (2011). Fotogrametri. T.C. Anadolu Üniversitesi Yayın No: 2295.

Bhandari, B., Oli, U., Pudasaini, U, & Panta. N. (2015). Generation Of High Resolution DSM Using UAV Images. FIG Working Week 2015 From the Wisdom of the Ages to the Challenges of the Modern World. 17-21 May 2015. Sofia. Bulgaria.

http://geoteknikltd.com/web_6750_1/entitialfocus.aspx?primary_id=10681&target=categorial1&type=665&detail=single

Snavely, N., Seitz, S. M., Szeliski, R. (2007). Modeling the world from internet photo collections. International Journal of Computer Vision, 80 (2), 189–210.

Alptekin, A., & Yakar, M. (2020). Determination of pond volume with using an unmanned aerial vehicle. Mersin Photogrammetry Journal, 2(2), 59-63.

Alptekin, A., Çelik, M. Ö., Kuşak, L., Ünel, F. B., & Yakar, M. (2019). Anafi Parrot’un heyelan bölgesi haritalandirilmasinda kullanimi. Türkiye İnsansız Hava Araçları Dergisi, 1(1), 33-37.