Determining the change in burnt forest areas with UAV: The example of Osmanbey campus

Main Article Content

Nizar Polat
Abdulkadir Memduhoğlu
Şeyma Akça

Abstract

Satellite data provides information about the fire and makes a significant contribution to damage assessment and improvement studies. Especially with multi-band satellite systems, it is possible to precisely identify and quickly map the fire damaged areas. However, satellite systems may be insufficient in terms of both temporal and spatial resolution. In addition, it is not always applicable in terms of cost according to the area of the working area. Unmanned Aerial Vehicles (UAVs), which have become widespread in many disciplines in recent years and in which imaging systems are integrated, provide new opportunities in this regard. UAVs are relatively more economical, user-friendly and provide high spatial resolution, providing convenience and speed in examining land changes in a short time. It is possible to make different analyzes according to the features of the integrated imaging system. In this study, Triangular Greenness Index (TGI) was produced by using a UAV system with a digital camera with visible bands. The study area is the forested area damaged in the fire that occurred in 2020 on the Osmanbey campus of Harran University. The data used for the study were obtained from two UAV flights one week after the fire and two years later. Both flight altitudes were 120m. While the rate of green space in the study area was 0.3% after the 2020 fire, it was observed that this rate increased to 0.54% in 2022. Thus, the areas that were not damaged immediately after the fire and the areas that grew green after two years were determined. expressions should not be included in essence.

Downloads

Download data is not yet available.

Article Details

How to Cite
Polat, N., Memduhoğlu, A. ., & Akça, Şeyma. (2022). Determining the change in burnt forest areas with UAV: The example of Osmanbey campus. Advanced UAV, 2(1), 11–16. Retrieved from https://publish.mersin.edu.tr/index.php/uav/article/view/252
Section
Articles

References

Watson, J. E., Evans, T., Venter, O., Williams, B., Tulloch, A., Stewart, C., ... & Lindenmayer, D. (2018). The exceptional value of intact forest ecosystems. Nature ecology & evolution, 2(4), 599-610.

Eker, M., Özer, D. (2015). Üretim işlerinde hassas ormancılık yaklaşımı: Kavramsal çerçeve. Türkiye Ormancılık Dergisi, 16(2), 183-194.

Buğday, E. (2016). Ormancılıkta Üretimin Planlaması ve Hassas Ormancılık Anlayışı. Anadolu Orman Araştırmaları Dergisi, 2(1-2), 54-57.

Buğday, E. (2019). Orman yönetiminde insansız hava aracı uygulamaları. In 2nd International Eurasian Conference on Biological and Chemical Sciences (EurasianBioChem 2019), June (Vol. 28, p. 29).

Alptekin, A., & Yakar, M. (2020). Determination of pond volume with using an unmanned aerial vehicle. Mersin Photogrammetry Journal, 2(2), 59-63.

Kusak, L., Unel, F. B., Alptekin, A., Celik, M. O., & Yakar, M. (2021). Apriori association rule and K-means clustering algorithms for interpretation of pre-event landslide areas and landslide inventory mapping. Open Geosciences, 13(1), 1226-1244.

Alptekin, A., & Yakar, M. (2020). Heyelan bölgesinin İHA kullanarak modellenmesi. Türkiye İnsansız Hava Araçları Dergisi, 2(1), 17-21.

Alptekin, A., Çelik, M. Ö., Kuşak, L., Ünel, F. B., & Yakar, M. (2019). Anafi Parrot’un heyelan bölgesi haritalandirilmasinda kullanimi. Türkiye İnsansız Hava Araçları Dergisi, 1(1), 33-37.

Alptekin, A., Çelik, M. Ö., Doğan, Y., & Yakar, M. (2019). Mapping of a rockfall site with an unmanned aerial vehicle. Mersin Photogrammetry Journal, 1(1), 12-16.

Yakar, M., Murat Yilmaz, H., Yildiz, F., Zeybek, M., Şentürk, H., & Çelik, H. (2009). Silifke-Mersin Bölgesinde Roma Dönemi Eserlerinin 3 Boyutlu Modelleme Çalışması ve Animasyonu. Jeodezi ve Jeoinformasyon Dergisi, (101).

Yakar, M., & Doğan, Y. (2018). Gis and three-dimensional modeling for cultural heritages. International Journal of Engineering and Geosciences, 3(2), 50-55.

Mirdan, O., & Yakar, M. (2017). Tarihi eserlerin İnsansız Hava Aracı ile modellenmesinde karşılaşılan sorunlar. Geomatik, 2(3), 118-125.

Yakar, M., Yılmaz, H. M., Güleç, S. A., & Korumaz, M. (2009). Advantage of digital close range photogrammetry in drawing of muqarnas in architecture.

Alptekin, A., & Yakar, M. (2021). 3D model of Üçayak Ruins obtained from point clouds. Mersin Photogrammetry Journal, 3(2), 37-40.

Yakar, M., & Doğan, Y. (2017). Silifke Aşağı Dünya Obruğunun İHA Kullanılarak Üç Boyutlu Modellenmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17(4), 94-101.

Yakar, M., & Doğan, Y. (2017). Mersin Silifke Mezgit Kale Anıt Mezarı Fotogrametrik Rölöve Alımı Ve Üç Boyutlu Modelleme Çalışması. Geomatik, 2(1), 11-17.

Yilmaz, H. M., Yakar, M., Mutluoglu, O., Kavurmaci, M. M., & Yurt, K. (2012). Monitoring of soil erosion in Cappadocia region (Selime-Aksaray-Turkey). Environmental Earth Sciences, 66(1), 75-81.

Balaji, S. R., & Karthikeyan, S. (2017). A survey on moving object tracking using image processing. In 2017 11th international conference on intelligent systems and control (ISCO) (pp. 469-474). IEEE.

Aksoy, B., Korucu, K., Çalişkan, Ö., Osmanbey, Ş., & Halis, H. D. (2021). İnsansız Hava Aracı ile Görüntü İşleme ve Yapay Zekâ Teknikleri Kullanılarak Yangın Tespiti: Örnek Bir Uygulama. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9(6), 112-122.

Candiago, S., Remondino, F., De Giglio, M., Dubbini, M., & Gattelli, M. (2015). Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote sensing, 7(4), 4026-4047.

Mazzia, V., Comba, L., Khaliq, A., Chiaberge, M., & Gay, P. (2020). UAV and machine learning based refinement of a satellite-driven vegetation index for precision agriculture. Sensors, 20(9), 2530.

De Swaef, T., Maes, W. H., Aper, J., Baert, J., Cougnon, M., Reheul, D., ... & Lootens, P. (2021). Applying RGB-and thermal-based vegetation indices from UAVs for high-throughput field phenotyping of drought tolerance in forage grasses. Remote Sensing, 13(1), 147.

Zhou, J., Zhou, J., Ye, H., Ali, M. L., Nguyen, H. T., & Chen, P. (2020). Classification of soybean leaf wilting due to drought stress using UAV-based imagery. Computers and Electronics in Agriculture, 175, 105576.

Su, J., Coombes, M., Liu, C., Zhu, Y., Song, X., Fang, S., ... & Chen, W. H. (2020). Machine learning-based crop drought mapping system by UAV remote sensing RGB imagery. Unmanned systems, 8(01), 71-83.

Guo, Y., Wang, H., Wu, Z., Wang, S., Sun, H., Senthilnath, J., ... & Fu, Y. (2020). Modified red blue vegetation index for chlorophyll estimation and yield prediction of maize from visible images captured by UAV. Sensors, 20(18), 5055.

Ranđelović, P., Đorđević, V., Milić, S., Balešević-Tubić, S., Petrović, K., Miladinović, J., & Đukić, V. (2020). Prediction of soybean plant density using a machine learning model and vegetation indices extracted from RGB images taken with a UAV. Agronomy, 10(8), 1108.

Jorge, J., Vallbé, M., & Soler, J. A. (2019). Detection of irrigation inhomogeneities in an olive grove using the NDRE vegetation index obtained from UAV images. European Journal of Remote Sensing, 52(1), 169-177.

Talucci, A. C., Forbath, E., Kropp, H., Alexander, H. D., DeMarco, J., Paulson, A. K., ... & Loranty, M. M. (2020). Evaluating post-fire vegetation recovery in Cajander Larch Forests in Northeastern Siberia using UAV derived vegetation indices. Remote Sensing, 12(18), 2970.

de Castro, A. I., Shi, Y., Maja, J. M., & Peña, J. M. (2021). UAVs for vegetation monitoring: Overview and recent scientific contributions. Remote Sensing, 13(11), 2139.

Dash, J. P., Pearse, G. D., & Watt, M. S. (2018). UAV multispectral imagery can complement satellite data for monitoring forest health. Remote Sensing, 10(8), 1216.

Yeom, J., Han, Y., Kim, T., & Kim, Y. (2019). Forest fire damage assessment using UAV images: A case study on goseong-sokcho forest fire in 2019. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 37(5), 351-357.

Hunt, E.R., Daughtry, C.S.T., Eitel, J.U.H., Long, D.S., (2011). Remote sensing leaf chloro- phyll content using a visible band index. Agronomy Journal 103, 1090–1099

Louhaichi, M., Borman, M. M., & Johnson, D. E. (2001). Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto International, 16, 65–70

Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58, 289–298

Jordan, C. F. (1969). Derivation of leaf area index from quality of light on the forest floor. Ecology 50, 663–666.

Pearson, R. L. & Miller, L. D. (1972). Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. In: Proceedings of the Eighth International Symposium on Remote Sensing of Environment. Environmental Research Institute of Michigan, Ann Arbor, MI, 1357–1381.

Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. In: Freden, S.C., Mercanti, E.P., Becker, M. (Eds.), Third Earth Resources Technology Satellite-1 Symposium, Vol. 1: Technical Presentations, NASA SP-351. National Aeronautics and Space Administration, Washington, DC, 309–317.

Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8, 127–150.

Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment 25, 295–309.

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X. & Ferreira, L. G., (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 83, 195–213.

Broge, N. H., & Leblanc, E. (2000). Comparing predictive power and stability of broad- band and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment 76, 156–172.

Vincini, M., Frazzi, E., & D’Alessio, P. (2008). A broad-band leaf chlorophyll index at the canopy scale. Precision Agriculture 9, 303–319