Determination of compaction parameters by image analysis technique

Main Article Content

Atila Demiröz
Mücahid Barstugan
Onur Saran
Hurşit Battal

Abstract

In this study, the control of compaction parameters for a stabilized filling material that is used in Granular Subbase (GSB) construction was examined by image analysis. Whether the specimen coming from the field met the GSB conditions was checked, and its void ratio was examined by image analysis. For this process, the specimens that were prepared by mixing epoxy at different ratios were cut from a certain distance. Photographs were taken from the cut pieces using a SONY HSC-400 camera. For this purpose, specimens containing epoxy by 4%, 6%, 8%, and 10% were prepared. The ratios of the void found on the cut specimens were calculated. The void ratios that were calculated by using the eglobal formula and those calculated by image processing methods were compared, and the void ratio was determined at an accuracy rate of 86.12% for the specimen that contained epoxy at a ratio of 8%.

Article Details

How to Cite
Demiröz, A., Barstugan, M. ., Saran, O., & Battal, H. (2023). Determination of compaction parameters by image analysis technique. Advanced Engineering Science, 3, 137–150. Retrieved from https://publish.mersin.edu.tr/index.php/ades/article/view/1192
Section
Articles

References

Zorluer, I., Icaga, Y., Gucek, S., & Dundar, E. (2020). Consistency analysis of sand cone and nuclear method results in compacted soils. Revista de la construcción, 19(3), 431-442. http://dx.doi.org/10.7764/rdlc.19.3.431

Joslin, J. G. (1959). Ohio's typical moisture-density curves. In Symposium on Application of Soil Testing in Highway Design and Construction. ASTM International.

Latta Jr, L., & Leonard Jr, J. B. (1978). U.S. Patent No. 4,107,112. Washington, DC: U.S. Patent and Trademark Office.

Nagaraj, T. S., & Srinivasa, B. R. (1994). Analysis and prediction of soil behaviour. Taylor & Francis.

Blotz, L. R., Benson, C. H., & Boutwell, G. P. (1998). Estimating optimum water content and maximum dry unit weight for compacted clays. Journal of Geotechnical and Geoenvironmental Engineering, 124(9), 907-912. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(907)

Frost, J. D., & Kuo, C. Y. (1996). Automated determination of the distribution of local void ratio from digital images. Geotechnical Testing Journal, 19(2), 107-117.

Sridharan, A., & Nagaraj, H. B. (2005). Plastic limit and compaction characteristics of finegrained soils. Proceedings of the institution of civil engineers-ground improvement, 9(1), 17-22. https://doi.org/10.1680/grim.2005.9.1.17

Onal, O., & Ozden, G. (2006). Sayısal görüntü işleme tekniklerinin geoteknikte uygulama örnekleri. Zemin Mekaniği ve Temel Mühendisliği Onbirinci Ulusal Kongresi, 333-340.

Soycan, Y. T. (2008). Yapay sinir ağları yaklaşımı ile kompaksiyon parametrelerinin tahmini. Master’s Thesis, Niğde Üniversitesi, Niğde, Türkiye

Deb, K., Sawant, V., & Kiran, A. (2010). Effects of fines on compaction characteristics of poorly graded sands. International Journal of Geotechnical Engineering, 4(2), 299-304. https://doi.org/10.3328/IJGE.2010.04.02.299-304

Sezer, A., Altun, S., & Goktepe, A. B. (2010). Sıkıştırılmış kumların yerel boşluk oranlarının tahmini. İMO Teknik Dergi, 334, 5113-5134

Bessa, I. S., Branco, V. T. C., & Soares, J. B. (2012). Evaluation of different digital image processing software for aggregates and hot mix asphalt characterizations. Construction and building materials, 37, 370-378. https://doi.org/10.1016/j.conbuildmat.2012.07.051

Çankaya, G., Arslan, M. H., & Ceylan, M. (2013). Görüntü işleme ve yapay sinir ağlari yöntemleri ile betonun basinç dayaniminin belirlenmesi. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 1(1), 1-12.

Ören, A. H. (2014). Estimating compaction parameters of clayey soils from sediment volume test. Applied Clay Science, 101, 68-72. https://doi.org/10.1016/j.clay.2014.07.019

dos Santos, J. F., Silva, H. R., Pinto, F. A., & Assis, I. R. D. (2016). Use of digital images to estimate soil moisture. Revista Brasileira de Engenharia Agrícola e Ambiental, 20, 1051-1056.

Akbulut, S. (2002). Görüntü analizi ile kum tanelerinin fraktal boyutunun belirlenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 8(3), 329-334.

Sinha, S. K., & Wang, M. C. (2008). Artificial neural network prediction models for soil compaction and permeability. Geotechnical and Geological Engineering, 26, 47-64. https://doi.org/10.1007/s10706-007-9146-3

Thompson, M. J., & White, D. J. (2008). Estimating compaction of cohesive soils from machine drive power. Journal of Geotechnical and Geoenvironmental Engineering, 134(12), 1771-1777. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:12(1771)

Günaydın, O. (2009). Estimation of soil compaction parameters by using statistical analyses and artificial neural networks. Environmental Geology, 57, 203-215. https://doi.org/10.1007/s00254-008-1300-6

Sinecen, M., & Makinacı, M. (2010). Agregaların Temel Şekil Özellikleri Kullanılarak Yapay Sinir Ağları Yardımıyla Sınıflandırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 16(2), 149-153

Isik, F., & Ozden, G. (2013). Estimating compaction parameters of fine-and coarse-grained soils by means of artificial neural networks. Environmental earth sciences, 69, 2287-2297. https://doi.org/10.1007/s12665-012-2057-5

Viji, V. K., Lissy, K. F., Sobha, C., & Benny, M. A. (2013). Predictions on compaction characteristics of fly ashes using regression analysis and artificial neural network analysis. International Journal of Geotechnical Engineering, 7(3), 282-291. https://doi.org/10.1179/1938636213Z.00000000036

Singh, B., Sihag, P., & Singh, K. (2017). Modelling of impact of water quality on infiltration rate of soil by random forest regression. Modeling Earth Systems and Environment, 3, 999-1004. https://doi.org/10.1007/s40808-017-0347-3

Ardakani, A., & Kordnaeij, A. (2019). Soil compaction parameters prediction using GMDH-type neural network and genetic algorithm. European Journal of Environmental and Civil Engineering, 23(4), 449-462. https://doi.org/10.1080/19648189.2017.1304269

Akyildiz, H., & Akbaş, E. (2020). Basit ve çoklu regresyon analizleri ile kompaksiyon parametrelerinin tahmin edilmesi ve F testi ile anlamlılığının incelenmesi. Engineering Sciences, 15(4), 186-195.

Toksöz, D., & Yilmaz, I. (2019). İnce taneli zeminler için önerilen bulanık sınıflama sürecinin bir uygulaması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(3), 535-544.

Karslioğlu, A., Mert, A. A., & Onur, M. İ. (2021). Zemin özelliklerinin belirlenmesinde yeni trendler. Avrupa Bilim ve Teknoloji Dergisi, (28), 998-1007. https://doi.org/10.31590/ejosat.1012397

Nuray, S. E., Gençdal, H. B., & Arama, Z. A. (2021). Zeminlerin kıvam ve kompaksiyon özelliklerinin tahmininde rastgele orman regresyonu yönteminin uygulanabilirliği. Mühendislik Bilimleri ve Tasarım Dergisi, 9(1), 265-281. https://doi.org/10.21923/jesd.804446

Karayolları Genel Müdürlüğü. (2023). Karayolları Teknik Şartnamesi. Ankara, Türkiye.

Hojjatoleslami, S. A., & Kittler, J. (1998). Region growing: a new approach. IEEE Transactions on Image processing, 7(7), 1079-1084. https://doi.org/10.1109/83.701170

Bradley, D., & Roth, G. (2007). Adaptive thresholding using the integral image. Journal of Graphics Tools, 12(2), 13-21. https://doi.org/10.1080/2151237X.2007.10129236