The effects of additive on photovoltaic performance of Cu2ZnSnS4 promising solar absorbers

Main Article Content

Samed Çetinkaya

Abstract

In this study, the effect of ethyl cellulose as an additive on the structural, morphological and electrical properties of CZTS thin films was investigated. It was observed that the morphology and characteristically properties improved with the increase of the ethyl cellulose additive ratio. Despite the contribution, no binary and/or ternary phases formed and the formation of CZTS thin films determined by Raman spectroscopy. It was observed that uniformly distributed, continuous and dense granules with a thickness of approximately 1-2 µm were formed, when the surface morphology ratio of the ethyl cellulose-0.9% was submitted. In addition, it was determined from the obtained results that these surface properties contributed positively to the IPCE efficiency measurements. Accordingly, the highest IPCE efficiency was calculated as 10.63%. Finally, the estimation of the optical absorption measurement results is in between 1.37 and 1.60 eV interpreted to be in agreement with the literature values.

Article Details

How to Cite
Çetinkaya, S. (2023). The effects of additive on photovoltaic performance of Cu2ZnSnS4 promising solar absorbers. Advanced Engineering Science, 3, 178–187. Retrieved from https://publish.mersin.edu.tr/index.php/ades/article/view/1324
Section
Articles

References

Ojeda-Durán, E., Monfil-Leyva, K., Andrade-Arvizu, J., Becerril-Romero, I., Sánchez, Y., Fonoll-Rubio, R., ... & Saucedo, E. (2020). CZTS solar cells and the possibility of increasing VOC using evaporated Al2O3 at the CZTS/CdS interface. Solar Energy, 198, 696-703. https://doi.org/10.1016/j.solener.2020.02.009

Shockley, W. (1961). Problems related to pn junctions in silicon. Solid-State Electronics, 2(1), 35-60. https://doi.org/10.1016/0038-1101(61)90054-5

Todorov, T. K., Reuter, K. B., & Mitzi, D. B. (2010). High‐efficiency solar cell with earth‐abundant liquid‐processed absorber. Advanced Materials, 22(20), 156-159. https://doi.org/10.1002/adma.200904155

Nakazawa, K. I. (1988). Electrical and optical properties of stannite-type quaternary semiconductor thin films. Japanese Journal of Applied Physics, 27(11R), 2094-2097. https://doi.org/10.1143/JJAP.27.2094

Katagiri, H., Jimbo, K., Maw, W. S., Oishi, K., Yamazaki, M., Araki, H., & Takeuchi, A. (2009). Development of CZTS-based thin film solar cells. Thin Solid Films, 517(7), 2455-2460. https://doi.org/10.1016/j.tsf.2008.11.002

Mitzi, D. B., Gunawan, O., Todorov, T. K., Wang, K., & Guha, S. (2011). The path towards a high-performance solution-processed kesterite solar cell. Solar Energy Materials and Solar Cells, 95(6), 1421-1436. https://doi.org/10.1016/j.solmat.2010.11.028

Pawar, S. M., Pawar, B. S., Moholkar, A. V., Choi, D. S., Yun, J. H., Moon, J. H., ... & Kim, J. H. (2010). Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application. Electrochimica Acta, 55(12), 4057-4061. https://doi.org/10.1016/j.electacta.2010.02.051

Sarswat, P. K., Snure, M., Free, M. L., & Tiwari, A. (2012). CZTS thin films on transparent conducting electrodes by electrochemical technique. Thin Solid Films, 520(6), 1694-1697. https://doi.org/10.1016/j.tsf.2011.07.052

Katagiri, H. (2005). Cu2ZnSnS4 thin film solar cells. Thin Solid Films, 480, 426-432. https://doi.org/10.1016/j.tsf.2004.11.024

Katagiri, H., Saitoh, K., Washio, T., Shinohara, H., Kurumadani, T., & Miyajima, S. (2001). Development of thin film solar cell based on Cu2ZnSnS4 thin films. Solar Energy Materials and Solar Cells, 65(1-4), 141-148. https://doi.org/10.1016/S0927-0248(00)00088-X

Wang, K., Gunawan, O., Todorov, T., Shin, B., Chey, S. J., Bojarczuk, N. A., ... & Guha, S. (2010). Thermally evaporated Cu2ZnSnS4 solar cells. Applied Physics Letters, 97(14), 143508. https://doi.org/10.1063/1.3499284

Fernandes, P. A., Salomé, P. M. P., & Da Cunha, A. F. (2011). Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. Journal of alloys and compounds, 509(28), 7600-7606. https://doi.org/10.1016/j.jallcom.2011.04.097

Schubert, B. A., Marsen, B., Cinque, S., Unold, T., Klenk, R., Schorr, S., & Schock, H. W. (2011). Cu2ZnSnS4 thin film solar cells by fast coevaporation. Progress in Photovoltaics: Research and Applications, 19(1), 93-96. https://doi.org/10.1002/pip.976

Araki, H., Mikaduki, A., Kubo, Y., Sato, T., Jimbo, K., Maw, W. S., ... & Takeuchi, A. (2008). Preparation of Cu2ZnSnS4 thin films by sulfurization of stacked metallic layers. Thin Solid Films, 517(4), 1457-1460. https://doi.org/10.1016/j.tsf.2008.09.058

Seol, J. S., Lee, S. Y., Lee, J. C., Nam, H. D., & Kim, K. H. (2003). Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process. Solar energy materials and solar cells, 75(1-2), 155-162. https://doi.org/10.1016/S0927-0248(02)00127-7

Yamaguchi, T., Kubo, T., Maeda, K., Niiyama, S., Imanishi, T., & Wakahara, A. (2009). Fabrication of Cu2ZnSnS4 thin films by sulfurization process from quaternary compound for photovoltaic device applications. In Proceedings of the International Conference on Electrical Engineering (pp. 1-4).

Fernandes, P. A., Salomé, P. M. P., Da Cunha, A. F., & Schubert, B. A. (2011). Cu2ZnSnS4 solar cells prepared with sulphurized dc-sputtered stacked metallic precursors. Thin Solid Films, 519(21), 7382-7385. https://doi.org/10.1016/j.tsf.2010.12.035

Fernandes, P. A., Salomé, P. M. P., & Da Cunha, A. F. (2009). Growth and Raman scattering characterization of Cu2ZnSnS4 thin films. Thin Solid Films, 517(7), 2519-2523. https://doi.org/10.1016/j.tsf.2008.11.031

Tanaka, K., Fukui, Y., Moritake, N., & Uchiki, H. (2011). Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency. Solar Energy Materials and Solar Cells, 95(3), 838-842. https://doi.org/10.1016/j.solmat.2010.10.031

Tanaka, K., Oonuki, M., Moritake, N., & Uchiki, H. (2009). Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing. Solar Energy Materials and Solar Cells, 93(5), 583-587. https://doi.org/10.1016/j.solmat.2008.12.009

Maeda, K., Tanaka, K., Fukui, Y., & Uchiki, H. (2011). Influence of H2S concentration on the properties of Cu2ZnSnS4 thin films and solar cells prepared by sol–gel sulfurization. Solar Energy Materials and Solar Cells, 95(10), 2855-2860. https://doi.org/10.1016/j.solmat.2011.05.050

Moritake, N., Fukui, Y., Oonuki, M., Tanaka, K., & Uchiki, H. (2009). Preparation of Cu2ZnSnS4 thin film solar cells under non‐vacuum condition. Physica Status Solidi c, 6(5), 1233-1236. https://doi.org/10.1002/pssc.200881158

Sarswat, P. K., & Free, M. L. (2011). Demonstration of a sol–gel synthesized bifacial CZTS photoelectrochemical cell. Physica Status Solidi (a), 208(12), 2861-2864. https://doi.org/10.1002/pssa.201127216

Fischereder, A., Rath, T., Haas, W., Amenitsch, H., Albering, J., Meischler, D., ... & Trimmel, G. (2010). Investigation of Cu2ZnSnS4 formation from metal salts and thioacetamide. Chemistry of Materials, 22(11), 3399-3406. https://doi.org/10.1021/cm100058q

Park, H., Hwang, Y. H., & Bae, B. S. (2013). Sol–gel processed Cu2ZnSnS4 thin films for a photovoltaic absorber layer without sulfurization. Journal of sol-gel Science and Technology, 65, 23-27. https://doi.org/10.1007/s10971-012-2703-0

Tanaka, K., Moritake, N., & Uchiki, H. (2007). Preparation of Cu2ZnSnS4 thin films by sulfurizing sol–gel deposited precursors. Solar Energy Materials and Solar Cells, 91(13), 1199-1201. https://doi.org/10.1016/j.solmat.2007.04.012

Yeh, M. Y., Lee, C. C., & Wuu, D. S. (2009). Influences of synthesizing temperatures on the properties of Cu2ZnSnS 4 prepared by sol–gel spin-coated deposition. Journal of sol-gel Science and Technology, 52, 65-68. https://doi.org/10.1007/s10971-009-1997-z

Chaudhuri, T. K., & Tiwari, D. (2012). Earth-abundant non-toxic Cu2ZnSnS4 thin films by direct liquid coating from metal–thiourea precursor solution. Solar Energy Materials and Solar Cells, 101, 46-50. https://doi.org/10.1016/j.solmat.2012.02.012

Yakuphanoglu, F. (2011). Nanostructure Cu2ZnSnS4 thin film prepared by sol–gel for optoelectronic applications. Solar Energy, 85(10), 2518-2523. https://doi.org/10.1016/j.solener.2011.07.012

Sarswat, P. K., & Free, M. L. (2012). An evaluation of depletion layer photoactivity in Cu2ZnSnS4 thin film. Thin Solid Films, 520(13), 4422-4426. https://doi.org/10.1016/j.tsf.2012.02.066

Zhang, X., Shi, X., Ye, W., Ma, C., & Wang, C. (2009). Electrochemical deposition of quaternary Cu2ZnSnS4 thin films as potential solar cell material. Applied Physics A, 94, 381-386. https://doi.org/10.1007/s00339-008-4815-5

Scragg, J. J., Berg, D. M., & Dale, P. J. (2010). A 3.2% efficient Kesterite device from electrodeposited stacked elemental layers. Journal of Electroanalytical Chemistry, 646(1-2), 52-59. https://doi.org/10.1016/j.jelechem.2010.01.008

Scragg, J. J., Dale, P. J., & Peter, L. M. (2008). Towards sustainable materials for solar energy conversion: Preparation and photoelectrochemical characterization of Cu2ZnSnS4. Electrochemistry Communications, 10(4), 639-642. https://doi.org/10.1016/j.elecom.2008.02.008

Mali, S. S., Patil, B. M., Betty, C. A., Bhosale, P. N., Oh, Y. W., Jadkar, S. R., ... & Patil, P. S. (2012). Novel synthesis of kesterite Cu2ZnSnS4 nanoflakes by successive ionic layer adsorption and reaction technique: characterization and application. Electrochimica Acta, 66, 216-221. https://doi.org/10.1016/j.electacta.2012.01.079

Mali, S. S., Shinde, P. S., Betty, C. A., Bhosale, P. N., Oh, Y. W., & Patil, P. S. (2012). Synthesis and characterization of Cu2ZnSnS4 thin films by SILAR method. Journal of physics and chemistry of solids, 73(6), 735-740. https://doi.org/10.1016/j.jpcs.2012.01.008

Su, Z., Yan, C., Sun, K., Han, Z., Liu, F., Liu, J., ... & Liu, Y. (2012). Preparation of Cu2ZnSnS4 thin films by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction method. Applied Surface Science, 258(19), 7678-7682. https://doi.org/10.1016/j.apsusc.2012.04.120

Shin, S. W., Pawar, S. M., Park, C. Y., Yun, J. H., Moon, J. H., Kim, J. H., & Lee, J. Y. (2011). Studies on Cu2ZnSnS4 (CZTS) absorber layer using different stacking orders in precursor thin films. Solar energy materials and solar cells, 95(12), 3202-3206. https://doi.org/10.1016/j.solmat.2011.07.005

Prabhakar, T., & Jampana, N. (2011). Effect of sodium diffusion on the structural and electrical properties of Cu2ZnSnS4 thin films. Solar Energy Materials and Solar Cells, 95(3), 1001-1004. https://doi.org/10.1016/j.solmat.2010.12.012

Rajamathi, M., & Seshadri, R. (2002). Oxide and chalcogenide nanoparticles from hydrothermal/solvothermal reactions. Current Opinion in Solid State and Materials Science, 6(4), 337-345. https://doi.org/10.1016/S1359-0286(02)00029-3

Peters, I. M., Gallegos, C. D. R., Sofia, S. E., & Buonassisi, T. (2019). The value of efficiency in photovoltaics. Joule, 3(11), 2732-2747.

Lee, K. M., Suryanarayanan, V., & Ho, K. C. (2006). The influence of surface morphology of TiO2 coating on the performance of dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 90(15), 2398-2404. https://doi.org/10.1016/j.solmat.2006.03.034

Muniz, E. C., Góes, M. S., Silva, J. J., Varela, J. A., Joanni, E., Parra, R., & Bueno, P. R. (2011). Synthesis and characterization of mesoporous TiO2 nanostructured films prepared by a modified sol–gel method for application in dye solar cells. Ceramics International, 37(3), 1017-1024. https://doi.org/10.1016/j.ceramint.2010.11.014

Maldonado-Valdivia, A. I., Galindo, E. G., Ariza, M. J., & Garcia-Salinas, M. J. (2013). Surfactant influence in the performance of titanium dioxide photoelectrodes for dye-sensitized solar cells. Solar Energy, 91, 263-272. https://doi.org/10.1016/j.solener.2013.02.009

Xu, S., Zhou, C. H., Yang, Y., Hu, H., Sebo, B., Chen, B. L., ... & Zhao, X. (2011). Effects of ethanol on optimizing porous films of dye-sensitized solar cells. Energy & Fuels, 25(3), 1168-1172. https://doi.org/10.1021/ef101546a

Kahraman, S., Çetinkaya, S., Podlogar, M., Bernik, S., Çetinkara, H. A., & Güder, H. S. (2013). Effects of the sulfurization temperature on sol gel-processed Cu2ZnSnS4 thin films. Ceramics International, 39(8), 9285-9292. https://doi.org/10.1016/j.ceramint.2013.05.039

Ghos, B. C., Farhad, S. F. U., Patwary, M. A. M., Majumder, S., Hossain, M. A., Tanvir, N. I., ... & Guo, Q. (2021). Influence of the substrate, process conditions, and postannealing temperature on the properties of ZnO thin films grown by the successive ionic layer adsorption and reaction method. ACS omega, 6(4), 2665-2674. https://doi.org/10.1021/acsomega.0c04837

Kitahara, K., Ishii, T., Suzuki, J., Bessyo, T., & Watanabe, N. (2011). Characterization of defects and stress in polycrystalline silicon thin films on glass substrates by Raman microscopy. International Journal of Spectroscopy, 2011, 632139. https://doi.org/10.1155/2011/632139

Choi, H. C., Jung, Y. M., & Kim, S. B. (2005). Size effects in the Raman spectra of TiO2 nanoparticles. Vibrational spectroscopy, 37(1), 33-38. https://doi.org/10.1016/j.vibspec.2004.05.006

Rajalakshmi, M., Arora, A. K., Bendre, B. S., & Mahamuni, S. (2000). Optical phonon confinement in zinc oxide nanoparticles. Journal of Applied Physics, 87(5), 2445-2448. https://doi.org/10.1063/1.372199

Yang, C. L., Wang, J. N., Ge, W. K., Guo, L., Yang, S. H., & Shen, D. Z. (2001). Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots. Journal of Applied Physics, 90(9), 4489-4493. https://doi.org/10.1063/1.1406973

Guo, L., Yang, S., Yang, C., Yu, P., Wang, J., Ge, W., & Wong, G. K. (2000). Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties. Applied physics letters, 76(20), 2901-2903. https://doi.org/10.1063/1.126511

Alim, K. A., Fonoberov, V. A., & Balandin, A. A. (2005). Origin of the optical phonon frequency shifts in ZnO quantum dots. Applied Physics Letters, 86(5), 053103. https://doi.org/10.1063/1.1861509

Jain, P., & Arun, P. (2013). Influence of grain size on the band-gap of annealed SnS thin films. Thin Solid Films, 548, 241-246. https://doi.org/10.1016/j.tsf.2013.09.089

Ansari, M. Z., & Khare, N. (2014). Structural and optical properties of CZTS thin films deposited by ultrasonically assisted chemical vapour deposition. Journal of Physics D: Applied Physics, 47(18), 185101. https://doi.org/10.1088/0022-3727/47/18/185101

Wang, H. H., Su, C., Wu, C. Y., Tsai, H. B., & Li, W. R. (2014). The effect of ethyl cellulose on TiO2 pastes for DSSCs application. International Journal of Nanotechnology, 11(12), 1138-1147. https://doi.org/10.1504/IJNT.2014.065140

Li, H., Xie, Z., Zhang, Y., & Wang, J. (2010). The effects of ethyl cellulose on PV performance of DSSC made of nanostructured ZnO pastes. Thin Solid Films, 518(24), e68-e71. https://doi.org/10.1016/j.tsf.2010.03.125

Delbos, S. (2012). Kësterite thin films for photovoltaics: a review. EPJ Photovoltaics, 3, 35004. https://doi.org/10.1051/epjpv/2012008

Kahraman, S., Çetinkaya, S., Podlogar, M., Bernik, S., Çetinkara, H. A., & Güder, H. S. (2013). Effects of the sulfurization temperature on sol gel-processed Cu2ZnSnS4 thin films. Ceramics International, 39(8), 9285-9292. https://doi.org/10.1016/j.ceramint.2013.05.039

Kahraman, S., Çakmak, H. M., Çetinkaya, S., Çetinkara, H. A., & Güder, H. S. (2013). The effects of coumarin additive on the properties of ZnO nanostructures. Journal of Physics and Chemistry of Solids, 74(4), 565-569. https://doi.org/10.1016/j.jpcs.2012.12.005

Maniam, K. K., & Paul, S. (2021). Corrosion performance of electrodeposited zinc and zinc-alloy coatings in marine environment. Corrosion and Materials Degradation, 2(2), 163-189. https://doi.org/10.3390/cmd2020010

Most read articles by the same author(s)