Simple and low-cost solution method for cobalt doped CuO nanostructured powder

Main Article Content

Samed Çetinkaya
Selma Erat
Murat Aycibin


In present work, pure and Co doped nanostructured powder were fabricated by chemical bath deposition method. X-ray analysis reveals that both pure and Co doped CuO have monoclinic crystal structure. After introducing Co2+ ions into the host, the crystalline percentage was decreased. The dislocation density and the microstrain were increased with Co addition. It is observed that pure CuO has nanoplate-assembled structure whereas CuO:Co nanostructured powder has irregular microplate-like particles.  Besides, Cu, Co, and O peaks are observed in EDX spectrum. The optical band gap energy reduced from 1.62 to 1.59 eV after CuO doped with Co. The electrical activation energy values were calculated for both pure and Co doped CuO as 0.134 eV and 0.232 eV, respectively.

Article Details

How to Cite
Çetinkaya, S., Erat , S. ., & Aycibin, M. . (2023). Simple and low-cost solution method for cobalt doped CuO nanostructured powder. Advanced Engineering Science, 3, 188–195. Retrieved from


Maini, A., & Shah, M. A. (2021). Investigation on physical properties of nanosized copper oxide (CuO) doped with cobalt (Co): a material for electronic device application. International Journal of Ceramic Engineering & Science, 3(4), 192-199.

Kaur, M., Prasher, D., & Sharma, R. (2022). Recent developments on I and II series transition elements doped SnO2 nanoparticles and its applications for water remediation process: a review. Journal of Water and Environmental Nanotechnology, 7(2), 194-217.

Srivastava, S., & Agarwal, A. (2018). Influence of Co doping on structural and optical properties of CuO nanoparticles. Journal of Ovonic Research, 14(5), 395-404.

Rahman, A. S., Islam, M. A., & Shorowordi, K. M. (2015). Electrodeposition and characterization of copper oxide thin films for solar cell applications. Procedia Engineering, 105, 679-685.

Renaudin, G., Gomes, S., & Nedelec, J. M. (2017). First-row transition metal doping in calcium phosphate bioceramics: A detailed crystallographic study. Materials, 10(1), 92.

Borzi, R. A., Stewart, S. J., Punte, G., Mercader, R. C., Curutchet, G. A., Zysler, R. D., & Tovar, M. (2000). Effect of ion doping on CuO magnetism. Journal of Applied Physics, 87(9), 4870-4872.

Devi, L. V., Selvalakshmi, T., Sellaiyan, S., Uedono, A., Sivaji, K., & Sankar, S. (2017). Effect of La doping on the lattice defects and photoluminescence properties of CuO. Journal of Alloys and Compounds, 709, 496-504.

Meneses, C. T., Duque, J. G. S., Vivas, L. G., & Knobel, M. (2008). Synthesis and characterization of TM-doped CuO (TM= Fe, Ni). Journal of Non-Crystalline Solids, 354(42-44), 4830-4832.

Baghdadi, N., Saeed, A., Ansari, A. R., Hammad, A. H., Afify, A., & Salah, N. (2021). Controlled nanostructuring via aluminum doping in CuO nanosheets for enhanced thermoelectric performance. Journal of Alloys and Compounds, 869, 159370.

Goyal, C. P., Goyal, D., K. Rajan, S., Ramgir, N. S., Shimura, Y., Navaneethan, M., ... & Ponnusamy, S. (2020). Effect of Zn doping in CuO octahedral crystals towards structural, optical, and gas sensing properties. Crystals, 10(3), 188.

Bayansal, F., Taşköprü, T., Şahin, B., & Çetinkara, H. A. (2014). Effect of cobalt doping on nanostructured CuO thin films. Metallurgical and Materials Transactions A, 45, 3670-3674.

Baturay, S., Tombak, A., Kaya, D., Ocak, Y. S., Tokus, M., Aydemir, M., & Kilicoglu, T. (2016). Modification of electrical and optical properties of CuO thin films by Ni doping. Journal of Sol-Gel Science and Technology, 78, 422-429.

Iqbal, M., Thebo, A. A., Shah, A. H., Iqbal, A., Thebo, K. H., Phulpoto, S., & Mohsin, M. A. (2017). Influence of Mn-doping on the photocatalytic and solar cell efficiency of CuO nanowires. Inorganic Chemistry Communications, 76, 71-76.

Sahin, B., Bayansal, F., Yüksel, M., & Çetinkara, H. A. (2014). Influence of annealing to the properties of un-doped and Co-doped CdO films. Materials Science in Semiconductor Processing, 18, 135-140.

Manna, S., & De, S. K. (2010). Room temperature ferromagnetism in Fe doped CuO nanorods. Journal of Magnetism and Magnetic Materials, 322(18), 2749-2753.

Ortega-López, M., Avila-Garcı́a, A., Albor-Aguilera, M. L., & Resendiz, V. S. (2003). Improved efficiency of the chemical bath deposition method during growth of ZnO thin films. Materials Research Bulletin, 38(7), 1241-1248.

Cudennec, Y., & Lecerf, A. (2003). The transformation of Cu (OH) 2 into CuO, revisited. Solid state sciences, 5(11-12), 1471-1474.

Maruthupandy, M., Zuo, Y., Chen, J. S., Song, J. M., Niu, H. L., Mao, C. J., ... & Shen, Y. H. (2017). Synthesis of metal oxide nanoparticles (CuO and ZnO NPs) via biological template and their optical sensor applications. Applied Surface Science, 397, 167-174.

Lu, P., Zhou, W., Li, Y., Wang, J., & Wu, P. (2017). Abnormal room temperature ferromagnetism in CuO/ZnO nanocomposites via hydrothermal method. Applied Surface Science, 399, 396-402.

Manibalan, G., Murugadoss, G., Thangamuthu, R., Ragupathy, P., Kumar, R. M., & Jayavel, R. (2018). Enhanced electrochemical supercapacitor and excellent amperometric sensor performance of heterostructure CeO2-CuO nanocomposites via chemical route. Applied Surface Science, 456, 104-113.

Zamani, N., Modarresi-Alam, A. R., & Noroozifar, M. (2018). Synthesis and application of phosphorus/Co3O4–CuO hybrid as high-performance anode materials for lithium-ion batteries. ACS Omega, 3(4), 4620-4630.

Doumeng, M., Makhlouf, L., Berthet, F., Marsan, O., Delbé, K., Denape, J., & Chabert, F. (2021). A comparative study of the crystallinity of polyetheretherketone by using density, DSC, XRD, and Raman spectroscopy techniques. Polymer Testing, 93, 106878.

Zargar, R. A., Arora, M., & Hafiz, A. K. (2015). Investigation of physical properties of screen printed nanosized ZnO films for optoelectronic applications. The European Physical Journal Applied Physics, 70(1), 10403.

Suthakaran, S., Dhanapandian, S., Krishnakumar, N., & Ponpandian, N. (2020). Hydrothermal synthesis of surfactant assisted Zn doped SnO2 nanoparticles with enhanced photocatalytic performance and energy storage performance. Journal of Physics and Chemistry of Solids, 141, 109407.

Zhao, F., Hu, C., Yu, L., Li, S., Yin, M., & Fan, X. (2023). An enhanced triethylamine response by incorporating mesoporous CuO into nanosheet-assembled Co3O4 microtubes. Sensors and Actuators B: Chemical, 379, 133230.

Bayansal, F., Kahraman, S., Çankaya, G., Çetinkara, H. A., Güder, H. S., & Çakmak, H. M. (2011). Growth of homogenous CuO nano-structured thin films by a simple solution method. Journal of Alloys and Compounds, 509(5), 2094-2098.

Munir, A., Joya, K. S., Ul Haq, T., Babar, N. U. A., Hussain, S. Z., Qurashi, A., ... & Hussain, I. (2019). Metal nanoclusters: new paradigm in catalysis for water splitting, solar and chemical energy conversion. ChemSusChem, 12(8), 1517-1548.

Kahraman, S., Çakmak, H. M., Çetinkaya, S., Bayansal, F., Çetinkara, H. A., & Güder, H. S. (2013). Characteristics of ZnO thin films doped by various elements. Journal of Crystal Growth, 363, 86-92.

Das, S., & Alford, T. L. (2013). Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing. Journal of Applied Physics, 113(24), 244905.

Çetinkaya, S. (2024). Solution‐based fabrication of copper oxide thin film influence of cobalt doping on structural, morphological, electrical, and optical properties. Turkish Journal of Engineering, 8(1), 107-115.