Design parameters of sand filtration systems in wastewater treatment process

Main Article Content

Ece Kalay
Hasan Sarıoğlu
İskender Özkul

Abstract

In parallel with the increasing population of the world, natural water resources are also decreasing day by day. Technologies need to be improved due to the official regulations for the protection of the environment and the increased need for water in enterprises. It is important to minimize the amount of waste water and recover valuable particles. Sand filtration is a system that has been frequently used in waste water recovery processes for years. It is effective in removing large particles, suspended solids and particles such as clay and silt that cause turbidity in water from water. In this study, the basic mechanism and design criteria of the system to obtain the best treatment efficiency in sand filtering systems are examined. However, more research is needed to focus on the composition and properties at the molecular level.

Article Details

How to Cite
Kalay, E. ., Sarıoğlu, H. ., & Özkul, İskender. (2021). Design parameters of sand filtration systems in wastewater treatment process. Advanced Engineering Science, 1, 34–42. Retrieved from https://publish.mersin.edu.tr/index.php/ades/article/view/23
Section
Articles

References

Pintilie, L., Torres, C. M., Teodosiu, C., & Castells, F. (2016). Urban wastewater reclamation for industrial reuse: An LCA case study. 139, 1-14.

Başkan, T. (2006). Arıtılmış Evsel Atıksuların Tarımda Sulama Amaçlı Yeniden Kullanılması. (Yüksek Lisans), İstanbul Teknik Üniversitesi,

Asan, C. (2013). Gri suların yeniden kullanımında membran biyoreaktör (MBR) uygulamaları. (Yüksek Lisans Tezi), Ondokuz Mayıs Üniversitesi,

Büyükkamacı, N. (2009). Su yönetiminin etkin bileşeni: yeniden kullanım. Paper presented at the İzmir Kent Sorunları Sempozyumu.

Oron, G., Gillerman, L., Buriakovsky, N., Bick, A., Gargir, M., Dolan, Y., . . . Hagin, J. J. D. (2008). Membrane technology for advanced wastewater reclamation for sustainable agriculture production. 218(1-3), 170-180.

Yim, S.-K., Ahn, W.-Y., Kim, G.-T., Koh, G.-W., Cho, J., & Kim, S.-H. J. D. (2007). Pilot-scale evaluation of an integrated membrane system for domestic wastewater reuse on islands. 208(1-3), 113-124

Hyun, K.-S., Lee, S.-J. J. W. S., & Technology. (2009). Biofilm/membrane filtration for reclamation and reuse of rural wastewaters. 59(11), 2145-2152.

Nakada, N., Shinohara, H., Murata, A., Kiri, K., Managaki, S., Sato, N., & Takada, H. J. W. r. (2007). Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. 41(19), 4373-4382.

Muhammad, N., Parr, J., Smith, M. D., & Wheatley, A. D. (1997). Removal of heavy metals by slow sand filtration.

Bruni, M., & Spuhler, D. J. S. i. (2012). Slow Sand Filtration.

Bland, L. (2008). Final Report: Sustainable Community Development–Water Slow-Sand Filtration. US EPA Grant Number SU833544. In.

D'Alessio, M., Yoneyama, B., Kirs, M., Kisand, V., & Ray, C. J. S. o. t. T. E. (2015). Pharmaceutically active compounds: Their removal during slow sand filtration and their impact on slow sand filtration bacterial removal. 524, 124-135.

Sánchez, L., Marin, L., Visscher, J., Rietveld, L. J. D. W. E., & Science. (2012). Low-cost multi-stage filtration enhanced by coagulation-flocculation in upflow gravel filtration. 5(1), 73-85.

Khengaoui, K., Mahammed, M. H., Touil, Y., & Amrane, A. J. E. P. (2015). Influence of secondary salinity wastewater on the efficiency of biological treatment of sand filter. 74, 398-403.

Vries, D., Bertelkamp, C., Kegel, F. S., Hofs, B., Dusseldorp, J., Bruins, J., . . . Van den Akker, B. J. W. R. (2017). Iron and manganese removal: Recent advances in modelling treatment efficiency by rapid sand filtration. 109, 35-45.

Han, S., Fitzpatrick, C. S., & Wetherill, A. J. W. r. (2009). The impact of flow surges on rapid gravity filtration. 43(5), 1171-1178.

Arena, N., Lee, J., & Clift, R. J. J. o. C. P. (2016). Life Cycle Assessment of activated carbon production from coconut shells. 125, 68-77.

McCleaf, P., Englund, S., Östlund, A., Lindegren, K., Wiberg, K., & Ahrens, L. J. W. r. (2017). Removal efficiency of multiple poly-and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests. 120, 77-87.

Smith, K., Li, Z., Chen, B., Liang, H., Zhang, X., Xu, R., . . . Liu, S. J. C. (2017). Comparison of sand-based water filters for point-of-use arsenic removal in China. 168, 155-162.

Soyer, E., Akgiray, Ö., Eldem, N. Ö., & Saatcı, A. M. J. C. S., Air, Water. (2010). Crushed recycled glass as a filter medium and comparison with silica sand. 38(10), 927-935.

Evans, G., Dennis, P., Cousins, M., Campbell, R. J. W. S., & supply, t. W. (2002). Use of recycled crushed glass as a filtration medium in municipal potable water treatment plants. 2(5-6), 9-16.

Rutledge, S. O., Fahie, C., & Gagnon, G. A. (2002). Assessment of crushed-recycled glass as filter media for drinking water treatment.

WATER, A. H. O. D. (2010). Water quality and treatment.

Eroğlu, V. J. İ. T. Ü. K. (1991). Su Tasfiyesi (3. Baskı). (1439), 175-248.

Kim, S.-B., Park, S.-J., Lee, C.-G., Choi, N.-C., Kim, D.-J. J. C., & Biointerfaces, S. B. (2008). Bacteria transport through goethite-coated sand: Effects of solution pH and coated sand content. 63(2), 236-242.

Scholl, M. A., Harvey, R. W. J. E. S., & Technology. (1992). Laboratory investigations on the role of sediment surface and groundwater chemistry in transport of bacteria through a contaminated sandy aquifer. 26(7), 1410-1417.