Investigating the Kavşut (Göksun-Kahramanmaraş) Cu-Pb-Zn deposit by using IP/Resistivity methods


  • Cihan Yalçın
  • Hurşit Canlı
  • Kıvanç Haznedaroğlu
  • Filiz Akbulut


Polymetallic, Cu-Pb-Zn, IP/Resistivity, Mining, Kavşut


According to its tectonic structure, Türkiye has major orogenic belts. Important ore deposits are observed along the characteristic Tethys metallogenic belt. Cu-Zn-Pb (polymetallic) mineralizations are hosted in many areas along this tectonic belt. The polymetallic enrichment southeast of Kavşut (Göksun, Kahramanmaraş-Turkey) is also located in the Tethys metallogenic belt. The region is basement to the Goksun ophiolites. This complex is overlain by the Malatya Metamorphites with a tectonic contact. Within these units, mineralization is observed in the fracture-cracks and karstic gaps of carbonate rocks. IP/Resistivity studies were carried out to reveal the geometry and distribution of this mineralization underground. It was determined that sulphide mineralizations show high rechargeability character. Cross sections and two-dimensional level maps were prepared according to the electrical data obtained for planning and coordination. This visual information provides very important information for the mining operation in the region.


Reynolds, J. M. (2011). An introduction to applied and environmental geophysics, 2nd ed.: John Wiley & Sons, England.

Loke, M. H., Chambers, J. E., Rucker, D. F., Kuras, O., & Wilkinson, P. B. (2013). Recent developments in the directcurrent geoelectrical imaging method: Journal of Applied Geophysics, 95, 135–156.

Loke, M. H., & Barker, R. D. (1996). Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophysical Prospecting, 44, 131-152.

Dusabemariya, C., Qian, W., Bagaragaza, R., Faruwa, A., & Ali, M. (2020). Some experiences of resistivity and induced polarization methods on the exploration of sulfide: A Review. Journal of Geosciences and Environment Protection, 8, 68-92.

Olowofela, J. A., Ajani, O. O., & Oladunjoye, M. A. (2008). Application of induced polarization method to delineate sulphide ore deposit in Osina Area of Benue State, Nigeria. Ife Journal of Science, 10(1), 137-150.

Alilou, S. K., Norouzi, G. H., Doulati, F., & Abedi, M. (2014). Application of magnetometery, electrical resistivity and induced polarization for exploration of polymetal deposits, a case study: Halab Dandi, Zanjan, Iran. 2nd Intl' Conf. on Advances in Engineering Sciences and Applied Mathematics (ICAESAM’2014) May 4-5, 2014, Istanbul (Turkey) https://

Biswas, A. (2017). A review on modeling, inversion and interpretation of self-potential in mineral exploration and tracing paleo-shear zones. Ore Geol. Rev. 91, 21–56.

Evrard, M., Dumont, G., Hermans, T., Chouteau, M., Francis, O., Pirard, E., & Nguyen, F. (2018). Geophysical investigation of the Pb–Zn deposit of Lontzen–Poppelsberg, Belgium. Minerals. 8 (233), 1–22.

Heritiana, R. A., Riva, R., Ralay, R., & Boni, R. (2019). Evaluation of flake graphite ore using self potential (SP), electrical resistivity tomography (ERT) and induced polarization (IP) methods in east coast of Madagascar. Journal of Applied Geophysics. 169, 134–141. https://doi. org/10.1016/j.jappgeo.2019.07.001.

Langore, L., Alikaj, P., & Gjovreku, D. (1989). Achievements in copper sulphide Exploration in Albania with IP and EM Methods. Geophysical Prospecting, 37, 975-991.

Yoshioka, K., & Zhdanov, M. S. (2005). Three-dimensional nonlinear regularized inversion of the induced polarization data based on the cole-cole model. Physics of the Earth and Planetary Interiors, 150(1-3), 29-43.

Sono, P., Nthaba, B., Shemang, E. M., Kgosidintsi, B., & Seane, T. (2021). An integrated use of induced polarization and electrical resistivity imaging methods to delineate zones of potential gold mineralization in the Phitshane Molopo area, Southeast Botswana. Journal of African Earth Sciences, 174, 104060.

Moreira, C. A., Lopes, S. M., Schweig, C., & Seixas, A. R. (2012). Geoelectrical prospection of disseminated sulfide mineral occurrences in Camaquã Sedimentary Basin, Rio Grande do Sul State, Brazil. Revista Brasileira de Geofísica, 30, 169-179.

Rao, G. S., Arasada, R. C., Sahoo, P. R., & Khan, I. (2019). Integrated geophysical investigations in the Mudiyawas–Khera block of the Alwar basin of North Delhi Fold Belt (NDBF): Implications on copper and associated mineralization. J. Earth Syst. Sci. 128, 161. https://

Janković, S. (1997). The Carpatho–Balkanides and adjacent area: a sector of the Tethyan Eurasian metallogenic belt. Miner. Deposita 32, 426–433.

Yiğit, Ö. (2012). A prospective sector in the Tethyan Metallogenic Belt: geology and geochronology of mineral deposits in the Biga Peninsula, NW Turkey. Ore Geology Reviews, 46, 118–148.

Yılmaz, A., Bedi, Y., Uysal, Ş., Yusufoğlu, H., Atabey, E. & Aydın, N. (1992). Doğu Toroslar’da Uzunyayla ile Beritdağı arasının jeolojisi: MTA Genel Müdürlüğü Rapor No: 9543 Ankara (yayımlanmamış).

Perinçek, D. & Kozlu, H. (1984). Afşin-Elbistan-Doğanşehir dolayının stratigrafisi ve bölgedeki birliklerin yapısal ilişkileri: TPAO Rapor No: 1909 (yayımlanmamış).

Mengeloğlu, M. (1999). K.Maraş–Elbistan yöresi genel jeokimya raporu. MTA Genel Müdürlüğü Rapor No: 10245 (yayımlanmamış), Ankara.

Tüfekçi, Ş. & Dumanlılar, İ. (2011). Afşin-Elbistan civarı jeokimya ve prospeksiyon raporu. MTA Genel Müdürlüğü Rapor No: 11388 (yayımlanmamış), Ankara.