The interpretation of the Arabian-Taurus plates collision zone by satellite images: Western Çağlayancerı̇t (Kahramanmaraş, Türkiye)
Main Article Content
Abstract
Kahramanmaraş region has been of interest to many researchers for its complex geologic structure. Especially the coexistence of lithologies belonging to different plates has led to the formation of different tectonic units. West of Çağlayancerit is an important area where both the Taurus and Arabian plates collide and is very close to the Gölbaşı-Türkoğlu Segment (left-lateral strike-slip fault). In addition, the Ahırdağı Thrust Zone, defined as an active fault, is also in this region. Tectonic slices were formed in the region due to the Arabian-Taurus collision. These tectonic slices comprise Malatya metamorphics, the Kenet Belt, and units belonging to the Autochthonous Arabian Plate. In this area where North-South compression is dominant, different structural elements have developed with the effect of the East Anatolian Fault that developed after the collision. Verifying these data obtained in the field with satellite images and revealing possible structural elements is important. In this study, ASTER L1T-Band3, Sentinel2A-Band11, and Landsat 8 OLI-PanBand8 bands were utilized to reveal the lineaments of the west of Çağlayancerit. High-resolution images were obtained from these satellites. First of all, the geologic elements of the area were determined with Sentinel2A data. Then, ALOS DEM (12m), SRTM DEM (30m), and NASA DEM (30m) data were used to determine the lineaments to identify potential faults and fold axes. Then, the data obtained from the three satellites were evaluated together. According to the evaluations, four different lineaments were identified in the region. These lineaments are Engizek Thrust Zone, Suture Zone, Arabian Plate Marginal Fold Belt, and Ahırdağı Thrust from north to south. The direction of these important lineations is generally East-West. The west of Çağlayancerit, which is very important in tectonics, has gained its present structural state with the effect of both collision and post-collision stresses.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Babaahmadi, A., Safaei, H., Yassaghi, A., Vafa, H., Naeimi, A., Madanipour, S., & Ahmadi, M. (2010). A study of Quaternary structures in the Qom region, West Central Iran. Journal of Geodynamics, 50(5), 355-367. https://doi.org/10.1016/j.jog.2010.04.006
Babaahmadi, A., Yassaghi, A., Naeimi, A., Dini, G. R., & Taghipour, S. (2010). Mapping Quaternary faults in the west of Kavir Plain, north-central Iran, from satellite imageries. International Journal of Remote Sensing, 31(19), 5111-5125. https://doi.org/10.1080/01431160903283884
Guild, P. W. (1974). Distribution of metallogenic provinces in relation to major earth features. In Metallogenetische und Geochemische Provinzen/Metallogenetic and Geochemical Provinces: Symposium Leoben, November 1972, 10-24. https://doi.org/10.1007/978-3-7091-4065-9_1
Masoud, A., Koike, K., & Teng, Y. (2007, August). Geothermal reservoir characterization integrating spatial GIS models of temperature, geology, and fractures. In Proc. 12th Conference of International Association for Mathematical Geology, Beijing, China, August, 26-31.
Oakey, G. (1994). A structural fabric defined by topographic lineaments: Correlation with Tertiary deformation of Ellesmere and Axel Heiberg Islands, Canadian Arctic. Journal of Geophysical Research: Solid Earth, 99(B10), 20311-20321. https://doi.org/10.1029/94JB00543
Fichler, C., Rundhovde, E., Olesen, O., Sæther, B. M., Rueslåtten, H., Lundin, E., & Doré, A. G. (1999). Regional tectonic interpretation of image enhanced gravity and magnetic data covering the mid-Norwegian shelf and adjacent mainland. Tectonophysics, 306(2), 183-197. https://doi.org/10.1016/S0040-1951(99)00057-8
Austin, J. R., & Blenkinsop, T. G. (2008). The Cloncurry Lineament: Geophysical and geological evidence for a deep crustal structure in the Eastern Succession of the Mount Isa Inlier. Precambrian Research, 163(1-2), 50-68. https://doi.org/10.1016/j.precamres.2007.08.012
Masoud, A. A., & Koike, K. (2011). Auto-detection and integration of tectonically significant lineaments from SRTM DEM and remotely-sensed geophysical data. ISPRS journal of Photogrammetry and Remote sensing, 66(6), 818-832. https://doi.org/10.1016/j.isprsjprs.2011.08.003
Şengör, A. C., & Yilmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75(3-4), 181-241. https://doi.org/10.1016/0040-1951(81)90275-4
Robertson, A. H. F., & Dixon, J. E. (1984). Introduction: aspects of the geological evolution of the Eastern Mediterranean. Geological Society, London, Special Publications, 17(1), 1-74. https://doi.org/10.1144/GSL.SP.1984.017.01.0
Robertson, A. H., Parlak, O., & Ustaömer, T. (2012). Overview of the Palaeozoic–Neogene evolution of neotethys in the Eastern Mediterranean region (southern Turkey, Cyprus, Syria). Petroleum Geoscience, 18(4), 381-404. https://doi.org/10.1144/petgeo2011-091
Yılmaz, Y. (1984). Amanos dağlarının jeolojisi: İ. Ü. Müh. Fak. (TPAO Arş. No. 1920, İstanbul).
Yılmaz, Y. (1987). Maraş kuzeyinin jeolojisi (Andırın- Berit-Engizek-Nurhak-Binboğa Dağları) yapı ve jeolojik evrimi. İstanbul Üniversitesi
Gül, M. A. (1987). Kahramanmaraş Yöresinin Jeolojisi ve Petrol Olanakları. T.P.A.O. Rap. No: 2359, Ankara.
Yılmaz, Y. & Yiğitbaş, E. (1990). SE Anadolu’nun Farklı Ofiyolitik Metamorfik Birlikleri ve Bunların Jeolojik Evrimdeki Rolü. Türkiye 8. Petrol Kongresi Bildirileri, 128-140
De Righi, M. R., & Cortesini, A. (1964). Gravity tectonics in foothills structure belt of southeast Turkey. AAPG Bulletin, 48(12), 1911-1937. https://doi.org/10.1306/A66334D8-16C0-11D7-8645000102C1865D
Gül, M. A. (2000). Kahramanmaraş yöresinin jeolojisi. Doctoral Dissertation, Hacettepe University, Türkiye
Yalçın, C. (2012). Çağlayancerit (Kahramanmaraş) batısının tektono-stratigrafisi ve yapısal evrimi. Master’s Thesis, Kahramanmaraş Sütçü İmam University, Türkiye
Yalçin, C. (2022). Kaleköy-Hombur (Çağlayancerit-Kahramanmaraş) civarının tektono-stratigrafik özellikleri. Geosound, 55(1), 37-60.
Yalçın, C. (2022). Evaluation of structural elements in the collision zone by remote sensing method. Intercontinental Geoinformation Days, 4, 5-8.
Yalçın, C. (2022). DEM and GIS-based assessment of structural elements in the collision zone: Çağlayancerit, Kahramanmaraş (Türkiye). Advanced Remote Sensing, 2(2), 66-73.
Waldhoff, G., Bubenzer, O., Bolten, A., Koppe, W., & Bareth, G. (2008). Spectral analysis of ASTER, Hyperion, and Quickbird data for geomorphological and geological research in Egypt (Dakhla Oasis, Western Desert). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 1201-1206.
Rani, K., Guha, A., Pal, S. K., & Vinod Kumar, K. (2018). Comparative analysis of potentials of ASTER thermal infrared band derived emissivity composite, radiance composite and emissivity–temperature composite in geological mapping of proterozoic rocks in parts of Banswara, Rajasthan. Journal of the Indian Society of Remote Sensing, 46, 771-782. https://doi.org/10.1007/s12524-017-0737-z
Chattoraj, S. L., Prasad, G., Sharma, R. U., van der Meer, F. D., Guha, A., & Pour, A. B. (2020). Integration of remote sensing, gravity and geochemical data for exploration of Cu-mineralization in Alwar basin, Rajasthan, India. International Journal of Applied Earth Observation and Geoinformation, 91, 102162. https://doi.org/10.1016/j.jag.2020.102162
Jain, S., Bhu, H., & Kothyari, G. C. (2021). Quaternary deformation in south-western Luni-Sukri basin, Rajasthan, India. Arabian Journal of Geosciences, 14(15), 1468. https://doi.org/10.1007/s12517-021-07710-2
Guha, A., Kumar Ghosh, U., Sinha, J., Pour, A. B., Bhaisal, R., Chatterjee, S., ... & Rao, P. V. (2021). Potentials of airborne hyperspectral AVIRIS-NG data in the exploration of base metal deposit—a study in the parts of Bhilwara, Rajasthan. Remote Sensing, 13(11), 2101. https://doi.org/10.3390/rs13112101
Pandey, A., & Purohit, R. (2022). Impact of geological controls on change in groundwater potential of recharge zones due to watershed development activities, using integrated approach of RS and GIS. Journal of Scientific Research, 66(1), 53-62. https://doi.org/10.37398/JSR.2022.660106
Işık, V. (2016). Torosların jeolojisi; Türkiye Jeolojisi Ders Notu. Ankara Üniversitesi, Jeoloji Mühendisliği Bölümü, Ankara.
Abdelkareem, M., Bamousa, A. O., Hamimi, Z., & Kamal El-Din, G. M. (2020). Multispectral and RADAR images integration for geologic, geomorphic, and structural investigation in southwestern Arabian Shield, Al Qunfudhah area, Saudi Arabia. Journal of Taibah University for Science, 14(1), 383-401. https://doi.org/10.1080/16583655.2020.1741957
Elmas, A., & Yilmaz, Y. (2003). Development of an oblique subduction zone—tectonic evolution of the Tethys suture zone in southeast Turkey. International Geology Review, 45(9), 827-840. https://doi.org/10.2747/0020-6814.45.9.827
Yılmaz, Y. (2019). Southeast Anatolian Orogenic Belt revisited (geology and evolution). Canadian Journal of Earth Sciences, 56(11), 1163-1180. https://doi.org/10.1139/cjes-2018-0170
Tawfeeq, A. F., & Atasever, Ü. H. (2023). Wetland monitoring by remote sensing techniques: A case study of Işıklı Lake. Advanced Remote Sensing, 3(1), 19-26.
Altun, M., & Turker, M. (2022). Integration of Sentinel-1 and Landsat-8 images for crop detection: The case study of Manisa, Turkey. Advanced Remote Sensing, 2(1), 23-33.