Using GlobeLand30 data and cellular automata modeling to predict urban expansion and sprawl in Kigali City
Main Article Content
Abstract
The growth and expansion of urban regions in various cities worldwide, especially in developing economies, leads to changes in land usage. Thus, the study assessed the changes in land use and land cover within Kigali City using the Land Change Modeler of the TerrSet software system. The study focused on 2010 to 2020, using classified GlobeLand30 maps to identify significant land cover transitions, which were then classified into submodels. An enhanced multi-layer perceptron neural network was also used to analyze these transitions. Urban expansion was predicted using five key variables: elevation, slope, distance from rivers, roads, and built-up areas. The multi-layer perceptron neural network achieved an accuracy of 81.90% in predicting land use and land cover changes. The Cellular Automata-Markov chain model in the Land Change Modeler was implemented to forecast land use and land cover patterns for 2030. Results indicated that (1) over the past decade (2010-2020), urban areas expanded by 20.89 km², while forests, grasslands, shrublands, and wetlands decreased by 1.31 km², 8.63 km², 0.15 km², and 0.05 km², respectively. The study also predicts that (2) from 2020 to 2030, urban areas and artificial surfaces will expand by 15.83%, with a considerable decrease in grassland and cultivated land. The study further predicts a slight decrease in wetland areas and for land use and land cover in Kigali City, highlighting the expansion of urban areas and their potential impact on other land uses. It serves as a critical tool to support sustainable urban planning and policies aimed at ensuring the long-term ecological and environmental sustainability of Kigali City.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Rudel, T. K. (2021). Land use and land use change. Handbook of Environmental Sociology, 425-438. https://doi.org/10.1007/978-3-030-77712-8_20
Fikadu, G., & Olika, G. (2023). Impact of land use land cover change using remote sensing with integration of socio-economic data on Rural Livelihoods in the Nashe watershed, Ethiopia. Heliyon, 9(3). https://doi.org/10.1016/j.heliyon.2023.e13746
Onilude, O. O., & Vaz, E. (2021). Urban sprawl and growth prediction for Lagos using GlobeLand30 data and cellular automata model. Sci, 3(2), 23. https://doi.org/10.3390/sci3020023
Tam, B. Y., Gough, W. A., & Mohsin, T. (2015). The impact of urbanization and the urban heat island effect on day to day temperature variation. Urban Climate, 12, 1-10. https://doi.org/10.1016/j.uclim.2014.12.004
Onilude, O. O., & Vaz, E. (2020). Data analysis of land use change and urban and rural impacts in Lagos state, Nigeria. Data, 5(3), 72. https://doi.org/10.3390/data5030072
Franz, G., Maier, G., & Schröck, P. (2006). Urban sprawl: How useful is this concept. In Proceedings of ERSA conference papers from European Regional Science Association, 1-29.
Mugiraneza, T., Ban, Y., & Haas, J. (2019). Urban land cover dynamics and their impact on ecosystem services in Kigali, Rwanda using multi-temporal Landsat data. Remote Sensing Applications: Society and Environment, 13, 234-246. https://doi.org/10.1016/j.rsase.2018.11.001
Patra, S., Sahoo, S., Mishra, P., & Mahapatra, S. C. (2018). Impacts of urbanization on land use/cover changes and its probable implications on local climate and groundwater level. Journal of Urban Management, 7(2), 70-84. https://doi.org/10.1016/j.jum.2018.04.006
Dumont, G. F. (2018). Urban Demographic Transition (La transition démographique urbaine). Urban Development Issues, 56, 13-25. https://doi.org/10.2478/udi-2018-0009
Seto, K. C., Güneralp, B., & Hutyra, L. R. (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences, 109(40), 16083-16088. https://doi.org/10.1073/pnas.121165810
Guidigan, M. L. G., Sanou, C. L., Ragatoa, D. S., Fafa, C. O., & Mishra, V. N. (2019). Assessing land use/land cover dynamic and its impact in Benin Republic using land change model and CCI-LC products. Earth Systems and Environment, 3(1), 127-137. https://doi.org/10.1007/s41748-018-0083-5
Yin, Z., Li, X., Tong, F., Li, Z., & Jendryke, M. (2020). Mapping urban expansion using night-time light images from Luojia1-01 and International Space Station. International Journal of Remote Sensing, 41(7), 2603-2623. https://doi.org/10.1080/01431161.2019.1693661
Kamaraj, M., & Rangarajan, S. (2022). Predicting the future land use and land cover changes for Bhavani basin, Tamil Nadu, India, using QGIS MOLUSCE plugin. Environmental Science and Pollution Research, 29(57), 86337-86348. https://doi.org/10.1007/s11356-021-17904-6
Dixon, B., & Candade, N. (2008). Multispectral landuse classification using neural networks and support vector machines: one or the other, or both?. International Journal of Remote Sensing, 29(4), 1185-1206. https://doi.org/10.1080/01431160701294661
Yuan, F., Sawaya, K. E., Loeffelholz, B. C., & Bauer, M. E. (2005). Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote Sensing of Environment, 98(2-3), 317-328. https://doi.org/10.1016/j.rse.2005.08.006
Güler, M., Yomralıoğlu, T., & Reis, S. (2007). Using landsat data to determine land use/land cover changes in Samsun, Turkey. Environmental Monitoring and Assessment, 127, 155-167. https://doi.org/10.1007/s10661-006-9270-1
Soffianian, A., Nadoushan, M. A., Yaghmaei, L., & Falahatkar, S. (2010). Mapping and analyzing urban expansion using remotely sensed imagery in Isfahan, Iran. World Applied Sciences Journal, 9(12), 1370-1378.
Mubea, K., & Menz, G. (2012). Monitoring land-use change in Nakuru (Kenya) using multi-sensor satellite data. Advances in Remote Sensing, 1, 74-84. https://doi.org/10.4236/ars.2012.13008
Nduwayezu, G., Manirakiza, V., Mugabe, L., & Malonza, J. M. (2021). Urban growth and land use/land cover changes in the post-genocide period, Kigali, Rwanda. Environment and Urbanization ASIA, 12(1), 127-146. https://doi.org/10.1177/0975425321997971
Mugiraneza, T., Haas, J., & Ban, Y. (2017). Spatiotemporal analysis of urban land cover changes in Kigali, Rwanda using multitemporal landsat data and landscape metrics. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 137-144. https://doi.org/10.5194/isprs-archives-XLII-3-W2-137-2017
National Institute of Statistics of Rwanda (NISR), Ministry of Finance and Economic Planning (MINECOFIN) [Rwanda]. (2012). Rwanda Fourth Population and Housing Census. Thematic Report: Population size, structure, and distribution.
Mugiraneza, T., Nascetti, A., & Ban, Y. (2020). Continuous monitoring of urban land cover change trajectories with landsat time series and landtrendr-google earth engine cloud computing. Remote Sensing, 12(18), 2883. https://doi.org/10.3390/rs12182883
National Institute of Statistics of Rwanda (NISR), Ministry of Finance and Economic Planning (MINECOFIN) [Rwanda]. (2012). Rwanda Fourth Population and Housing Census. Thematic Report: Gender.
Arsanjani, J. J., Tayyebi, A., & Vaz, E. (2016). GlobeLand30 as an alternative fine-scale global land cover map: Challenges, possibilities, and implications for developing countries. Habitat International, 55, 25-31. https://doi.org/10.1016/j.habitatint.2016.02.003
http://www.globallandcover.com
Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., ... & Mills, J. (2015). Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing, 103, 7-27. https://doi.org/10.1016/j.isprsjprs.2014.09.002
Arowolo, A. O., & Deng, X. (2018). Land use/land cover change and statistical modelling of cultivated land change drivers in Nigeria. Regional Environmental Change, 18, 247-259. https://doi.org/10.1007/s10113-017-1186-5
Bie, Q., Shi, Y., Li, X., & Wang, Y. (2022). Contrastive analysis and accuracy assessment of three global 30 m land cover maps circa 2020 in arid land. Sustainability, 15(1), 741. https://doi.org/10.3390/su15010741
Eastman, J. R. (2016). TerrSet geospatial monitoring and modeling system. Clark University: Worcester, MA, USA, 345-389.
Li, C., Yang, M., Li, Z., & Wang, B. (2021). How will Rwandan land use/land cover change under high population pressure and changing climate?. Applied Sciences, 11(12), 5376. https://doi.org/10.3390/app11125376
Müller, K., Steinmeier, C., & Küchler, M. (2010). Urban growth along motorways in Switzerland. Landscape and Urban Planning, 98(1), 3-12. https://doi.org/10.1016/j.landurbplan.2010.07.004
Luo, J., & Wei, Y. D. (2009). Modeling spatial variations of urban growth patterns in Chinese cities: The case of Nanjing. Landscape and Urban Planning, 91(2), 51-64. https://doi.org/10.1016/j.landurbplan.2008.11.010
Poelmans, L., & Van Rompaey, A. (2009). Detecting and modelling spatial patterns of urban sprawl in highly fragmented areas: A case study in the Flanders–Brussels region. Landscape and Urban Planning, 93(1), 10-19. https://doi.org/10.1016/j.landurbplan.2009.05.018
Reilly, M. K., O’Mara, M. P., & Seto, K. C. (2009). From Bangalore to the Bay Area: Comparing transportation and activity accessibility as drivers of urban growth. Landscape and Urban Planning, 92(1), 24-33. https://doi.org/10.1016/j.landurbplan.2009.02.001
Xu, Q., Zhu, A. X., & Liu, J. (2023). Land-use change modeling with cellular automata using land natural evolution unit. Catena, 224, 106998. https://doi.org/10.1016/j.catena.2023.106998
Wickham, J. D., Stehman, S. V., Gass, L., Dewitz, J., Fry, J. A., & Wade, T. G. (2013). Accuracy assessment of NLCD 2006 land cover and impervious surface. Remote Sensing of Environment, 130, 294-304. https://doi.org/10.1016/j.rse.2012.12.001
Beroho, M., Briak, H., Cherif, E. K., Boulahfa, I., Ouallali, A., Mrabet, R., ... & Aboumaria, K. (2023). Future scenarios of land use/land cover (LULC) based on a CA-markov simulation model: case of a mediterranean watershed in Morocco. Remote Sensing, 15(4), 1162. https://doi.org/10.3390/rs15041162
Ozturk, D. (2015). Urban growth simulation of Atakum (Samsun, Turkey) using cellular automata-Markov chain and multi-layer perceptron-Markov chain models. Remote Sensing, 7(5), 5918-5950. https://doi.org/10.3390/rs70505918
Halmy, M. W. A., Gessler, P. E., Hicke, J. A., & Salem, B. B. (2015). Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Applied Geography, 63, 101-112. https://doi.org/10.1016/j.apgeog.2015.06.015
Manirakiza, V., Mugabe, L., Nsabimana, A., & Nzayirambaho, M. (2019). City Profile: Kigali, Rwanda. Environment and Urbanization ASIA, 10(2), 290-307. https://doi.org/10.1177/0975425319867485
Ministry of Infrastructure [Rwanda]. (2016). National Sanitation Policy.
GGGI. (2020). Mapping of Public Spaces in Kigali: Towards City-Wide Public Space Strategy.
Joshi S, Joshi S, Damani H, NG J, Lauwa L. (2013). Kigali City - analysis, benchmarking & vision report. Detailed district physical plans for Kicukiro & Gasabo.
Nshimiyimana, A. R., Niyigena, E., Nyandwi, E., Ngwijabagabo, H., & Rugengamanzi, G. (2023). Spatial Assessment of Urban Growth on Green Spaces in Rwanda: An insight from Rebero Mountain Landscape in Kicukiro District, City of Kigali. Rwanda Journal of Engineering, Science, Technology and Environment, 5(1). https://doi.org/10.4314/rjeste.v5i1.5
REMA. (2021) Rwanda State of Environment and Outlook. Ministry of Natural Resources.
Government of Rwanda. (2011). Green Growth and Climate Resilience. The Way Forward in International Climate Policy. 100.
NST1. (2017). 7 Years Government Programme: National Strategy for Transformation (NST1) 2017 – 2024.
Rwanyiziri, G., Kayitesi, C., Mugabowindekwe, M., Byizigiro, R. V., Muyombano, E., Kagabika, M. B., & Bimenyimana, T. (2020). Spatio-temporal analysis of urban growth and its effects on wetlands in Rwanda: the case of Rwampara wetland in the city of Kigali. Journal of Applied Sciences and Environmental Management, 24(9), 1495-1501. https://doi.org/10.4314/jasem.v24i9.2