Dramatically increase of built-up area in Iraq during the last four decades

Main Article Content

Azad Othman Rasul
Hasan Mohammed Hameed
Gaylan Rasul Faqe Ibrahim

Abstract

Land Use Land Cover (LULC) detection is a crucial indicator of environmental change since it is associated with the climate, ecosystem procedures, land degradation, biodiversity and increased human actions. The objective of current study is to observe how main LULC class changed in Iraq from 1982 to 2019. Overall, 5259 Landsat 4, 5 and 8 images were utilized for land classification. In the study, Random Forest classification method was performed in Google Earth Engine (GGE) platform. The research has established the accuracy assessment of overall accuracy and kappa coefficient of four periods are 95% or higher. The trend of classes demonstrated that built up class increased dramatically by 248.6%. In contrast, bare soil, which covers most territories of Iraq decreased by 8.4% (30,212 km2) from Period 1(1982-1989) to Period 4 (2010-2019). Likewise, vegetation class decreased by 20.2% (8,151 km2) during the same period.

Article Details

How to Cite
Rasul, A. O., Hameed, H. M., & Ibrahim, G. R. F. . (2021). Dramatically increase of built-up area in Iraq during the last four decades. Advanced Remote Sensing, 1(1), 1–9. Retrieved from https://publish.mersin.edu.tr/index.php/arsej/article/view/152
Section
Articles

References

Ganasri, B.P., & Dwarakish. G.S. (2015). Study of Land Use/Land Cover Dynamics through Classification Algorithms for Harangi Catchment Area, Karnataka State, INDIA. Aquatic Procedia, 4,1413–1420. http://doi.org/10.1016/j.aqpro.2015.02.183

Xiao, J, Shen, Y., Ge, J., Tateishi, R., Tang, C., Liang, Y., & Huang, Z. (2006). Evaluating Urban Expansion and Land Use Change in Shijiazhuang, China, by Using GIS and Remote Sensing. Landscape and Urban Planning 75 (1–2): 69–80. http://doi.org/10.1016/j.landurbplan.2004.12.005.

Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., & Huang, X. (2010). MODIS Collection 5 Global Land Cover: Algorithm Refinements and Characterization of New Datasets. Remote Sensing of Environment 114 (1). Elsevier Inc.: 168–182. http://doi.org/10.1016/j.rse.2009.08.016.

Hameed, H. M., Faqe, G. R., & Rasul, A. (2020). Effects of land cover change on surface runoff using GIS and remote sensing: a case study Duhok sub-basin. In Environmental Remote Sensing and GIS in Iraq (pp. 205-223). Springer, Cham. http://doi.org/10.1007/978-3-030-21344-2_9.

Usman, M., Liedl, R., Shahid, M. A., & Abbas, A. (2015). Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data. Journal of Geographical sciences, 25(12), 1479-1506. http://doi.org/10.1007/s11442-015-1247-y.

Buyadi, S. N. A., Mohd, W. M. N. W., & Misni, A. (2013). Impact of land use changes on the surface temperature distribution of area surrounding the National Botanic Garden, Shah Alam. Procedia-Social and Behavioral Sciences, 101, 516-525.

Roy, S., Farzana, K., Papia, M., & Hasan, M. (2015). Monitoring and Prediction of Land Use/Land Cover Change Using the Integration of Markov Chain Model and Cellular Automation in the Southeastern Tertiary Hilly Area of Bangladesh. International Jornal of Sciencies:Basic and Applied Researchs 24 (October): 125–148.

Hamad, R., Balzter, H., & Kolo, K. (2018). Predicting Land Use/Land Cover Changes Using a CA-Markov Model under Two Different Scenarios. Sustainability (Switzerland) 10 (10): 1–23. http://doi.org/10.3390/su10103421.

Liu, D., Zhua, Q., & Li, Y. (2016). Land Cover Change Detection in Chinese Zhejiang Province Based on Object-Oriented Approach. Earth Resources and Environmental Remote Sensing/GIS Applications VII 10005: 100051J. http://doi.org/10.1117/12.2241175.

Pai, B. J., & Shenoy, K. N. (2015). Land Use Land Cover Pattern in the Vicinity of Mannapalla Lake, Manipal. Aquatic Procedia 4 (Icwrcoe). Elsevier B.V.: 1405–1412. http://doi.org/10.1016/j.aqpro.2015.02.182.

Long, H., Tang, G., Li, X., & Heilig, G. K. (2007). Socio-Economic Driving Forces of Land-Use Change in Kunshan, the Yangtze River Delta Economic Area of China. Journal of Environmental Management 83 (3): 351–364. http://doi.org/10.1016/j.jenvman.2006.04.003.

Figueiredo, J., & Pereira, H. M. (2011). Regime Shifts in a Socio-Ecological Model of Farmland Abandonment. Landscape Ecology 26 (5): 737–749. http://doi.org/10.1007/s10980-011-9605-3.

Weng, Q. (2001). A Remote Sensing?GIS Evaluation of Urban Expansion and Its Impact on Surface Temperature in the Zhujiang Delta, China. International Journal of Remote Sensing, 22 (10): 1999–2014. http://doi.org/10.1080/713860788.

Chen, S., Zeng, S., & Xie, C. (2000). Remote sensing and GIS for urban growth analysis in China. Photogrammetric Engineering and Remote Sensing, 66(5), 593-598.

Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random forests for land cover classification. Pattern recognition letters, 27(4), 294-300.

Mahdianpari, M., Salehi, B., Mohammadimanesh, F., & Motagh, M. (2017). Random forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 13-31.

Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Homayouni, S., & Gill, E. (2019). The first wetland inventory map of newfoundland at a spatial resolution of 10 m using sentinel-1 and sentinel-2 data on the google earth engine cloud computing platform. Remote Sensing, 11(1), 43.

Thanh Noi, P., & Kappas, M. (2018). Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors, 18(1), 18.

Whyte, A., Ferentinos, K. P., & Petropoulos, G. P. (2018). A new synergistic approach for monitoring wetlands using Sentinels-1 and 2 data with object-based machine learning algorithms. Environmental Modelling & Software, 104, 40-54.

Jadkowski, M. A., Howard, R. R., & Brostuen, D. E. (1990). Application of SPOT data for regional growth analysis and local planning [J]. Photogrammetric engineering and remote sensing, 56(2), 175-180.

Othman, A. A., Shihab, A. T., Al-Maamar, A. F., & Al-Saady, Y. I. (2020). Monitoring of the land cover changes in Iraq. In Environmental Remote Sensing and GIS in Iraq (pp. 181-203). Springer, Cham. http://doi.org/10.1007/978-3-030-21344-2_8.

Araya, Y. H., & Cabral, P. (2010). Analysis and modeling of urban land cover change in Setúbal and Sesimbra, Portugal. Remote Sensing, 2(6), 1549-1563. http://doi.org/10.3390/rs2061549.

Mitsova, D., Shuster, W., & Wang, X. (2011). A cellular automata model of land cover change to integrate urban growth with open space conservation. Landscape and urban planning, 99(2), 141-153. http://doi.org/10.1016/j.landurbplan.2010.10.001.

Peijun, D. U., Xingli, L. I., Wen, C. A. O., Yan, L. U. O., & Zhang, H. (2010). Monitoring urban land cover and vegetation change by multi-temporal remote sensing information. Mining Science and Technology (China), 20(6), 922-932. http://doi.org/10.1016/S1674-5264(09)60308-2.

Dewan, A. M., & Yamaguchi, Y. (2009). Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Applied geography, 29(3), 390-401. http://doi.org/10.1016/j.apgeog.2008.12.005

Hegazy, I. R., & Kaloop, M. R. (2015). Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt. International Journal of Sustainable Built Environment, 4(1), 117-124.http://doi.org/10.1016/j.ijsbe.2015.02.005.

Quarmby, N. A., & Cushnie, J. L. (1989). Monitoring urban land cover changes at the urban fringe from SPOT HRV imagery in south-east England. International Journal of Remote Sensing, 10(6), 953-963.

López, E., Bocco, G., Mendoza, M., & Duhau, E. (2001). Predicting land-cover and land-use change in the urban fringe: A case in Morelia city, Mexico. Landscape and urban planning, 55(4), 271-285.

Yuan, F., Sawaya, K. E., Loeffelholz, B. C., & Bauer, M. E. (2005). Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote sensing of Environment, 98(2-3), 317-328.

Yin, J., Yin, Z., Zhong, H., Xu, S., Hu, X., Wang, J., & Wu, J. (2011). Monitoring urban expansion and land use/land cover changes of Shanghai metropolitan area during the transitional economy (1979–2009) in China. Environmental monitoring and assessment, 177(1), 609-621.

Zhang, H., Qi, Z. F., Ye, X. Y., Cai, Y. B., Ma, W. C., & Chen, M. N. (2013). Analysis of land use/land cover change, population shift, and their effects on spatiotemporal patterns of urban heat islands in metropolitan Shanghai, China. Applied Geography, 44, 121-133.

Mohan, M., & Kandya, A. (2015). Impact of urbanization and land-use/land-cover change on diurnal temperature range: A case study of tropical urban airshed of India using remote sensing data. Science of the Total Environment, 506, 453-465.

Rasul, A., Balzter, H., & Smith, C. (2016). Diurnal and seasonal variation of surface urban cool and heat islands in the semi-arid city of Erbil, Iraq. Climate, 4(3), 42.

Yang, L., Xian, G., Klaver, J. M., & Deal, B. (2003). Urban land-cover change detection through sub-pixel imperviousness mapping using remotely sensed data. Photogrammetric Engineering & Remote Sensing, 69(9), 1003-1010. http://doi.org/10.14358/PERS.69.9.1003.

Alberti, M., Weeks, R., & Coe, S. (2004). Urban land-cover change analysis in central Puget Sound. Photogrammetric Engineering & Remote Sensing, 70(9), 1043-1052. http://doi.org/10.14358/PERS.70.9.1043.

Lv, Z. Q., & Zhou, Q. G. (2011). Utility of Landsat image in the study of land cover and land surface temperature change. Procedia environmental sciences, 10, 1287-1292. http://doi.org/10.1016/j.proenv.2011.09.206.

Pal, S., & Ziaul, S. K. (2017). Detection of land use and land cover change and land surface temperature in English Bazar urban centre. The Egyptian Journal of Remote Sensing and Space Science, 20(1), 125-145. http://doi.org/10.1016/j.ejrs.2016.11.003.

Rasul, A., Balzter, H., & Smith, C. (2017). Applying a normalized ratio scale technique to assess influences of urban expansion on land surface temperature of the semi-arid city of Erbil. International journal of remote sensing, 38(13), 3960-3980.

Ha, T. V., Tuohy, M., Irwin, M., & Tuan, P. V. (2020). Monitoring and mapping rural urbanization and land use changes using Landsat data in the northeast subtropical region of Vietnam. The Egyptian Journal of Remote Sensing and Space Science, 23(1), 11-19. http://doi.org/10.1016/j.ejrs.2018.07.001.

Juliev, M., Pulatov, A., Fuchs, S., & Hübl, J. (2019). Analysis of Land Use Land Cover Change Detection of Bostanlik District, Uzbekistan. Polish Journal of Environmental Studies, 28(5), 3235–3242. http://doi.org/10.15244/pjoes/94216.

Malinowski, J. C. (2002). Iraq: A Geography. United States Military Academy, West Point Department of Geography & Environmental Engineering, Building 600, West Point, New York 10996. https://eric.ed.gov/?id=ED476013.

Metz, H. C. (1990). Iraq, a Country Study.

Al-Haboby, A., Breisinger, C., Debowicz, D., El-Hakim, A. H., Ferguson, J., van Rheenen, T., & Telleria, R. (2014). Agriculture for Development in Iraq? Estimating the Impacts of Achieving the Agricultural Targets of the National Development Plan 2013 2017 on Economic Growth, Incomes, and Gender Equality. Vol. 1349. Intl Food Policy Res Inst.

Goldblatt, R., You, W., Hanson, G., & Khandelwal, A. K. (2016). Detecting the boundaries of urban areas in india: A dataset for pixel-based image classification in google earth engine. Remote Sensing, 8(8), 634.

Breiman, L., & Friedman, J. H. (1985). Estimating optimal transformations for multiple regression and correlation. Journal of the American statistical Association, 80(391), 580-598.

Kohavi, R. (1995, August). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Ijcai, 14(2), 1137-1145.

Goldblatt, R., Rivera Ballesteros, A., & Burney, J. (2017). High spatial resolution visual band imagery outperforms medium resolution Spectral imagery for ecosystem assessment in the semi-arid Brazilian Sertão. Remote Sensing, 9(12), 1336.

Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote sensing of environment, 37(1), 35-46.

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell. A., & Michaelsen, J. (2015). The Climate Hazards Infrared Precipitation with Stations—a New Environmental Record for Monitoring Extremes. Scientific Data, 2(1), 1-21.