Investigation of spatial change in Lake Surface with Google Earth Engine: Example of Marmara Lake
Main Article Content
Abstract
It is essential to monitor the changes in wetlands on the earth's surface to understand the impact of global climate changes and human activities on water resources. Remote Sensing (RS) techniques are beneficial in monitoring and mapping the dynamics of changes in wetlands. Although RS techniques seem practical in monitoring water surfaces, traditional RS methods require a high amount of workforce, software, hardware, and especially data storage needs. For this purpose, in this study, the change in water surface area of Marmara Lake, located within the borders of Manisa Province, between 2013-2022, was investigated with Google Earth Engine (GEE). The change in the water surface area was analyzed for four different seasons using Landsat-8 (OLI) images. The Normalized Difference Water Index (NDWI) was used in the study. The study is divided into four different classes according to the land use conditions of the region: vegetation, water surface, bare lands, and agricultural lands. Support Vector Machines (SVM), a machine learning algorithm, were used for classification. According to the analyzes made, it has been determined that a wetland of 3,975.78 ha has dried up in the lake surface area in the last eight years. This calculated area corresponds to an area of 75.04%, according to the average of all areas.
Article Details
References
Duan, W., Maskey, S., Chaffe, P. L., Luo, P., He, B., Wu, Y., & Hou, J. (2021). Recent advancement in remote sensing technology for hydrology analysis and water resources management. Remote sensing, 13(6), 1097.
Rundquist, D. C., Narumalani, S., & Narayanan, R. M. (2001). A review of wetlands remote sensing and defining new considerations.
Díaz-Pinzón, L., Sierra, L., & Trillas, F. (2022). The Economic Value of Wetlands in Urban Areas: The Benefits in a Developing Country. Sustainability, 14(14), 8302.
Yan, Z., Zhang, K., Peng, Q., Kang, E., Li, M., Zhang, X., ... & Kang, X. (2022). Spatio-Temporal Variations and Socio-Economic Driving Forces for Wetland Area Changes: Insights from 2008–2017 Data of Yunnan Province, China. Water, 14(11), 1790.
Mitsch, W. J., Gosselink, J. G., Zhang, L., & Anderson, C. J. (2009). Wetland ecosystems. John Wiley & Sons.
Ouma, Y. O., & Tateishi, R. (2006). A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: an empirical analysis using Landsat TM and ETM+ data. International Journal of Remote Sensing, 27(15), 3153-3181.
Verpoorter, C., Kutser, T., & Tranvik, L. (2012). OCEANOGRAPHY: METHODS Automated mapping of water bodies using Landsat multispectral data. 1037–1050
Arekhi, M., Goksel, C., Balik Sanli, F., & Senel, G. (2019). Comparative evaluation of the spectral and spatial consistency of Sentinel-2 and Landsat-8 OLI data for Igneada longos forest. ISPRS International Journal of Geo-Information, 8(2), 56.
Albarqouni, M. M., Yagmur, N., Bektas Balcik, F., & Sekertekin, A. (2022). Assessment of Spatio-Temporal Changes in Water Surface Extents and Lake Surface Temperatures Using Google Earth Engine for Lakes Region, Turkey. ISPRS International Journal of Geo-Information, 11(7), 407.
Eid, A. N. M., Olatubara, C. O., Ewemoje, T. A., Farouk, H., & El-Hennawy, M. T. (2020). Coastal wetland vegetation features and digital Change Detection Mapping based on remotely sensed imagery: El-Burullus Lake, Egypt. International Soil and Water Conservation Research, 8(1), 66-79.
Feeters, S. (1996). El Uso del Índice de Agua de Diferencia Normalizada (NDWI) en la Delineación de Características de Aguas Abiertas. Revista Internacional de Teledetección (17), 1425-1432.
Babaei, H., Janalipour, M., & Tehrani, N. A. (2021). A simple, robust, and automatic approach to extract water body from Landsat images (case study: Lake Urmia, Iran). Journal of Water and Climate Change, 12(1), 238-249.
Cordeiro, M. C., Martinez, J. M., & Peña-Luque, S. (2021). Automatic water detection from multidimensional hierarchical clustering for Sentinel-2 images and a comparison with Level 2A processors. Remote Sensing of Environment, 253, 112209.
Rad, A. M., Kreitler, J. R., & Sadegh, M. (2021). Augmented normalized difference water index for improved monitoring of surface water. Environmental Modeling and Software, 140.
Reis, S., & Yilmaz, H. M. (2008). Temporal monitoring of water level changes in Seyfe Lake using remote sensing. Hydrological Processes: An International Journal, 22(22), 4448-4454.
Sun, F., Sun, W., Chen, J., & Gong, P. (2012). Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery. International journal of remote sensing, 33(21), 6854-6875.
Jawak, S. D., & Luis, A. J. (2014). A semiautomatic extraction of Antarctic Lake features using WorldView-2 imagery. Photogrammetric Engineering & Remote Sensing, 80(10), 939-952.
Temiz, F., Bozdag, A., Durduran, S. S., & Gumus, M. G. (2017). Monitoring coastline change using remote sensing and GIS technology: a case study of Burdur Lake, Turkey. Fresenius Environmental Bulletin, 26(12), 7235-7242.
Mansaray, L. R., Wang, F., Huang, J., Yang, L., & Kanu, A. S. (2020). Accuracies of support vector machine and random forest in rice mapping with Sentinel-1A, Landsat-8 and Sentinel-2A datasets. Geocarto International, 35(10), 1088-1108.
Yue, H., Li, Y., Qian, J., & Liu, Y. (2020). A new accuracy evaluation method for water body extraction. International Journal of Remote Sensing, 41(19), 7311-7342.
Zhuang, Q., Zhang, J., Cheng, L., Chen, H., Song, Y., Chen, S., ... & Li, M. (2022). Framework for Automatic Coral Reef Extraction Using Sentinel-2 Image Time Series. Marine Geodesy, 45(3), 195-231.
Robinson, N. P., Allred, B. W., Jones, M. O., Moreno, A., Kimball, J. S., Naugle, D. E., ... & Richardson, A. D. (2017). A dynamic Landsat derived normalized difference vegetation index (NDVI) product for the conterminous United States. Remote sensing, 9(8), 863.
Patel, N. N., Angiuli, E., Gamba, P., Gaughan, A., Lisini, G., Stevens, F. R., ... & Trianni, G. (2015). Multitemporal settlement and population mapping from Landsat using Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 35, 199-208.
Goldblatt, R., You, W., Hanson, G., & Khandelwal, A. K. (2016). Detecting the boundaries of urban areas in india: A dataset for pixel-based image classification in google earth engine. Remote Sensing, 8(8), 634.
Gülersoy, A. (2013). Marmara Gölü yakın çevresindeki arazi kullanım faaliyetlerinin zamansal değişimi (1975-2011) ve göl ekosistemlerine etkileri. Türk Coğrafya Dergisi, (61), 31-44.
https://kulasalihligeopark.com/marmara-golu/
Kaplan, G., & Avdan, U. (2017). Water extraction technique in mountainous areas from satellite images. Journal of Applied Remote Sensing, 11(4), 046002.
Hossen, H., Ibrahim, M. G., Mahmod, W. E., Negm, A., Nadaoka, K., & Saavedra, O. (2018). Forecasting future changes in Manzala Lake surface area by considering variations in land use and land cover using remote sensing approach. Arabian Journal of Geosciences, 11(5), 1-17.
Yang, X., Qin, Q., Grussenmeyer, P., & Koehl, M. (2018). Urban surface water body detection with suppressed built-up noise based on water indices from Sentinel-2 MSI imagery. Remote sensing of environment, 219, 259-270.
Chen, T., Song, C., Ke, L., Wang, J., Liu, K., & Wu, Q. (2021). Estimating seasonal water budgets in global lakes by using multi-source remote sensing measurements. Journal of Hydrology, 593, 125781.
Worden, J., & de Beurs, K. M. (2020). Surface water detection in the Caucasus. International Journal of Applied Earth Observation and Geoinformation, 91, 102159.