DEM and GIS-based assessment of structural elements in the collision zone: Çağlayancerit, Kahramanmaraş (Türkiye)

Main Article Content

Abstract

Topographic and linear data are precisely linked to the tectonic structure of the region. This relation can be identified both in the field and in satellite images. As it is recognized, high topographic areas are formed with the effect of the compression regime in the zones where different continents are sutured. There are traces of the suture zone in the northeast of Kahramanmaraş. Because of the closure of the Neotethys Ocean, a collision zone developed in and around Çağlayancerit, located in the northeast of Kahramanmaraş. Units in the Arabian Autochthonous and Taurus Orogenic belts came together in this district. Thrust belts and faults have been observed in this vicinity. In this region, there are different tectonostratigraphic sequences sliced on top of each other by the effect of compression. These slices and their structural features have caused different morphological traces in the region. Structural events have led to the development of linearity and topographic elevations, respectively. According to the in-situ observation and the digital elevation model (DEM) analysis results which were performed in the QGIS environment, the topographic elevations in the collision belt are relatively higher than the areas in the south. As a result of the north-south compression, the thrust lines formed definite linearity. Each fault characterized in the region controls the morphology directly.

Article Details

How to Cite
Yalçın, C. . (2022). DEM and GIS-based assessment of structural elements in the collision zone: Çağlayancerit, Kahramanmaraş (Türkiye). Advanced Remote Sensing, 2(2), 66–73. Retrieved from https://publish.mersin.edu.tr/index.php/arsej/article/view/625
Section
Articles

References

Guild, P. W. (1974). Distribution of metallogenic provinces in relation to major earth features. In Metallogenetische und Geochemische Provinzen/Metallogenetic and Geochemical Provinces (pp. 10-24). Springer, Vienna.

Masoud, A., Koike, K., & Teng, Y. (2007, August). Geothermal reservoir characterization integrating spatial GIS models of temperature, geology, and fractures. In Proc. 12th Conference of International Association for Mathematical Geology, Beijing, China, August (pp. 26-31).

Oakey, G. (1994). A structural fabric defined by topographic lineaments: Correlation with Tertiary deformation of Ellesmere and Axel Heiberg Islands, Canadian Arctic. Journal of Geophysical Research: Solid Earth, 99(B10), 20311-20321.

Fichler, C., Rundhovde, E., Olesen, O., Sæther, B. M., Rueslåtten, H., Lundin, E., & Doré, A. G. (1999). Regional tectonic interpretation of image enhanced gravity and magnetic data covering the mid-Norwegian shelf and adjacent mainland. Tectonophysics, 306(2), 183-197.

Austin, J. R., & Blenkinsop, T. G. (2008). The Cloncurry Lineament: Geophysical and geological evidence for a deep crustal structure in the Eastern Succession of the Mount Isa Inlier. Precambrian Research, 163(1-2), 50-68.

Masoud, A. A., & Koike, K. (2011). Auto-detection and integration of tectonically significant lineaments from SRTM DEM and remotely-sensed geophysical data. ISPRS journal of Photogrammetry and Remote sensing, 66(6), 818-832. https://doi.org/10.1016/j.isprsjprs.2011.08.003

Morris, K. (1991). Using Knowledge-Base Rules to Map the Three-Dimensional Nature of Geological. Photogrammetric Engineering & Remote Sensing, 57, 1209-1216.

Suzen, M. L., & Toprak, V. (1998). Filtering of satellite images in geological lineament analyses: an application to a fault zone in Central Turkey. International journal of remote sensing, 19(6), 1101-1114.

Tripathi, N. K., Gokhale, K. V. G. K., & Siddiqui, M. U. (2000). Directional morphological image transforms for lineament extraction from remotely sensed images. International Journal of Remote Sensing, 21(17), 3281-3292.

Blakely, R. J. (1996). Potential theory in gravity and magnetic applications. Cambridge university press.

Miller, H. G., & Singh, V. (1994). Potential field tilt—a new concept for location of potential field sources. Journal of applied Geophysics, 32(2-3), 213-217.

Şengör, A. C., & Yilmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75(3-4), 181-241.

Robertson, A. H. F., & Dixon, J. E. (1984). Introduction: aspects of the geological evolution of the Eastern Mediterranean. Geological Society, London, Special Publications, 17(1), 1-74.

Robertson, A. H., Parlak, O., & Ustaömer, T. (2012). Overview of the Palaeozoic–Neogene evolution of neotethys in the Eastern Mediterranean region (southern turkey, cyprus, Syria). Petroleum Geoscience, 18(4), 381-404.

Yılmaz, Y. (1984). Amanos dağlarının jeolojisi: İ. Ü. Müh. Fak. (TPAO Arş. No. 1920, İstanbul).

Yılmaz, Y., Gürpınar, O., Kozlu, H., Gül, MA., Yiğitbaş, E., Yıldırım, M., Genç, C. & Keskin, M. (1987). Maraş kuzeyinin jeolojisi (Andırın- Berit-Engizek-Nurhak-Binboğa Dağları) yapı ve jeolojik evrimi. İstanbul Üniversitesi, Mühendislik Fakültesi.

Gül, M.A. (1987). Kahramanmaraş Yöresinin Jeolojisi ve Petrol Olanakları. T.P.A.O. Rap. No: 2359, (Yayınlanmamış), Ankara.

Yilmaz, Y., & Yiğitbaş, E. (1990). SE Anadolu’nun farklı ofiyolitik-metamorfik birlikleri ve bunların jeolojik evrimdeki rolü, Türkiye 8. Petrol Kong. Bild, 128-140.

De Righi, M. R., & Cortesini, A. (1964). Gravity tectonics in foothills structure belt of southeast Turkey. AAPG Bulletin, 48(12), 1911-1937.

Gül, M. A. (2000). Kahramanmaraş yöresinin jeolojisi. Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 304 s.

Yalçın, C., (2012). Çağlayancerit (Kahramanmaraş) batısının tektono-stratigrafisi ve yapısal evrimi. Kahramanmaraş Sütçü İmam Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 129s.

Yalçın, C., & Kop, A. (2022). Kaleköy-Hombur (Çağlayancerit-Kahramanmaraş) civarının tektono-stratigrafik özellikleri, Geosound, 55 (1), 37-60

Yalçın, C. (2022). Evaluation of structural elements in the collision zone by remote sensing method. Intercontinental Geoinformation Days, 4, 5-8.

Waldhoff, G., Bubenzer, O., Bolten, A., Koppe, W., & Bareth, G. (2008). Spectral analysis of ASTER, Hyperion, and Quickbird data for geomorphological and geological research in Egypt (Dakhla Oasis, Western Desert). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 37, 1201-1206.

Rani, K., Guha, A., Pal, S. K., & Vinod Kumar, K. (2018). Comparative analysis of potentials of ASTER thermal infrared band derived emissivity composite, radiance composite and emissivity–temperature composite in geological mapping of proterozoic rocks in parts of Banswara, Rajasthan. Journal of the Indian Society of Remote Sensing, 46(5), 771-782. https://doi.org/10.1007/s12524-017-0737-z.

Chattoraj, S. L., Prasad, G., Sharma, R. U., van der Meer, F. D., Guha, A., & Pour, A. B. (2020). Integration of remote sensing, gravity and geochemical data for exploration of Cu-mineralization in Alwar basin, Rajasthan, India. International Journal of Applied Earth Observation and Geoinformation, 91, 102162. https://doi.org/10.1016/j.jag.2020.102162.

Jain, S., Bhu, H., & Kothyari, G. C. (2021). Quaternary deformation in south-western Luni-Sukri basin, Rajasthan, India. Arabian Journal of Geosciences, 14(15), 1-12. https://doi.org/10.1007/s12517-021-07710-2.

Guha, A., Kumar Ghosh, U., Sinha, J., Pour, A. B., Bhaisal, R., Chatterjee, S., ... & Rao, P. V. (2021). Potentials of Airborne Hyperspectral AVIRIS-NG Data in the Exploration of Base Metal Deposit—A Study in the Parts of Bhilwara, Rajasthan. Remote Sensing, 13(11), 2101. https://doi.org/10.3390/rs13112101.

Pandey, A., & Purohit, R. (2022). Impact of Geological Controls on Change in Groundwater Potential of Recharge Zones due to Watershed Development Activities, Using Integrated Approach of RS and GIS. Journal of Scientific Research, 66(1), 53-62

Işık, V. (2016). Torosların jeolojisi; Türkiye Jeolojisi Ders Notu. Ankara Üniversitesi, Jeoloji Mühendisliği Bölümü, Ankara.

https://earthexplorer.usgs.gov

Abdelkareem, M., Bamousa, A. O., Hamimi, Z., & Kamal El-Din, G. M. (2020). Multispectral and RADAR images integration for geologic, geomorphic, and structural investigation in southwestern Arabian Shield, Al Qunfudhah area, Saudi Arabia. Journal of Taibah University for Science, 14(1), 383-401.

Elmas, A., & Yilmaz, Y. (2003). Development of an oblique subduction zone—tectonic evolution of the Tethys suture zone in southeast Turkey. International Geology Review, 45(9), 827-840.

Yılmaz, Y. (2019). Southeast Anatolian Orogenic Belt revisited (geology and evolution). Canadian Journal of Earth Sciences, 56(11), 1163-1180.

Şengör, A. M. C., & Yılmaz, Y. (1983). Türkiye’de Tetis’ in evrimi: Levha tektoniği açısından bir yaklaşım. Türkiye Jeoloji Kurumu Yerbilimleri Özel Dizisi, 1, 75.

Yiğitbaş, E., Yılmaz, Y., & Genç, Ş. C. (1992). Güneydoğu Anadolu orojenik kuşağında Eosen nap yerleşmesi. Türkiye, 9, 307-318.