Least-Squares Spectral Analysis of Hourly Tide Gauge Data – A Case Study: LSSA of Hourly Tide-Gauge Data
Published 2023-03-24
Keywords
- Least-squares,
- Period,
- Periodicity,
- Spectral analysis,
- Tide gauge data
- GPS ...More
How to Cite
Copyright (c) 2023 Advanced Geomatics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Abstract
Tide gauge observations are samples of geodetic time series realized depending on the time. These observations like other experimental time series might have trends, short gaps, datum shifts and unequally spaced data which usually make disturbing effects to the analysis. In other methods (e. g. classical Fourier Transform), trend is removed before the analysis, the others (i.e. short gap and unequally spaced data) are taken over by filling any interpolation techniques. In this case the editing may produce well-composed time series, but it may obliterate the useful information in the series or even introduce artificial signals. This means that unwanted results take place during the process. There is an alternative method, called the Least-Squares Spectral Analysis (LSSA) which can bypass these problems without editing or pre-processing. In the present study, hourly sea level observations obtained from the Antalya tide gauge in Turkey were analyzed by using the LSSA method. Consequently, five hidden periodicities were successfully determined from the sea level observations containing difficulties mentioned above.
References
- Abbak, R. A. 2005. Least Squares Spectral Analysis of Sea Level Observations. Master Thesis, Institution of Natural and Applied Sciences, Selcuk University.
- Abbak, R. A. (2007). Wavelet Analysis of Time Series in Geodesy. PhD Seminar, Institution of Natural and Applied Sciences, Selcuk University.
- Abbasi M., 1999, “Comparison of Fourier, Least Squares and Wavelet Spectral Analysis Methods Test on Persian Gulf Tidal Data”, Master's Thesis, Surveying Engineering Department, K. N. Toosi University of Technology, Tehran, Iran.
- Ainscow B., Blackman D., Kerrigde J., Pugh D., and Shaw S. 1985, “Manual on Sea Level Measurement and Interpretation”, Volume I, UNESCO.
- Amerian Y., Voosoghi B., 2011, “Least Squares Spectral Analysis for Detection of Systematic Behaviour of Digital Level Compensator”, Journal of Geodetic Science, Vol: 1(1), pp: 35—40.
- Craymer M. R. 1998, “The Least Squares Spectrum, Its Inverse Transform and Autocorrelation Function: Theory and Applications in Geodesy”, PhD thesis, Graduate Department of Civil Engineering, University of Toronto.
- Espy P. J. and Witt G. 1996, “Observations of a Quasi 16 Day Wave in the Polar Summer Mesospheric Temperature”, Journal of Geophysical Research, Vol: 102, pp: 1—32.
- LSSA, 2022, “Least-Squares Spectral Analysis Program”, Accessed date: September 2022, http://www3.sympatico.ca/craymer/software/lssa.
- Mantegazza L., 1997, High Azimuthal Number Pulsation Modes in Fast Rotating Scuti Stars: The Case of HD 101158V837 Cen, Astronomy and Astrophysics, Vol: 23 pp: 844—852
- Omerbashich M., 2003, “Earth-Model Discrimination Method”, PhD Thesis, Geodesy and Geomatics Engineering, University of New Brunswick.
- ORNL, 2022, Oak Ridge National Laboratory, http://www.phy.ornl.gov/csep/CSEP/-OM/NODE31.html
- Ozturk, E. Z. and Abbak, R. A. 2020. “PHCSOFT: A Software package for computing physical height changes from GRACE based global geopotential models”. Earth Science Informatics, 13(4):1499–1505.
- Ozturk, E.Z., Godah, W., and Abbak, R. A. 2020. “Estimation of physical height changes from GRACE satellite mission data and WGHM over Turkey”. Acta Geodaetica et Geophysica, 55(2):301–317.
- Pagiatakis S. D., 1999, “Stochastic Significance of Peaks in The Least-Squares Spectrum”, Journal of Geodesy, Vol: 73, pp: 67—78.
- Taylor J. and Hamilton S., 1972, “Some Tests of the Vaníček Method of Spectral Analysis”, Astrophysics and Space Science, Volume: 17, pp: 357—367.
- TGDM, 1991, “The Hourly sea level records for the year 1990 at Erdek, Mentes/Izmir, Bodrum, Antalya tide- gauges”, Turkish General Diretorate of Mapping, Ankara.
- Vaníček P., 1969a, “Approximate Spectral Analysis by Least Squares”, Astrophysics Space Science, Volume: 4, pp: 387—391.
- Vaníček P., 1969b, “New analysis of the earth pole wobble”. Studia Geophysica et Geodaetica, Volume: 13, pp: 225—230.
- Vaníček P. 1971, “Further Development and Properties of the Spectral Analysis by Least Squares”, Astrophysics Space Science, Vol: 12, pp: 10—33.
- Vaníček P. and Krakiwsky E. J. 1986, Geodesy Concepts: Part 1, Elsevier Book Company, 2nd Edition, 748 p., Amsterdam
- Wells D. E., Vaníček P. and Pagiatakis S. D. 1985. “Least Squares Spectral Analysis Revisited”, Technical Report 84, Geodesy and Geomatics Engineering, University of New Brunswick.