Vol. 3 No. 2 (2023)
Articles

GLOF Hazard Assessment using Geospatial Techniques in Hunza Nagar, Gilgit Baltistan, Pakistan

Published 2023-09-30

Keywords

  • GLOF Hazard, Risk Assessment, Glacial retreat, Hunza Nagar, Karakoram Anomaly

How to Cite

Iqbal, A., & Mahmood, S. (2023). GLOF Hazard Assessment using Geospatial Techniques in Hunza Nagar, Gilgit Baltistan, Pakistan. Advanced Geomatics, 3(2), 40–46. Retrieved from https://publish.mersin.edu.tr/index.php/geomatics/article/view/928

Abstract

Worldwide in different regions, increase in temperature has caused variations in many natural phenomena particularly expansion, contraction and creation of glacial lakes Hindu Kush Himalayas (HKH) region. In the recent past, several of these lakes have been burst out and generated Glacial Lake Outburst Floods (GLOFs) causing considerable human life loss damages to infrastructure and properties in downstream areas. This study is an effort to assess GLOF hazard in Nagar valley, Gilgit Baltistan using Geo-spatial Technique. Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM) and Google Earth image has been utilized as input data.  Buffer analysis is applied to demarcate the hazard zone and map the elements at risk. The results indicated that Passu Lake has potential to cause GLOF. The volume of the lake has been increased from 788383.79 m3 (2016) to 892910.494 m3 (2018). The exposed areas include portions of Karakoram Highway and some villages downstream to Passu Lake along Hunza River. The outcomes of this study will be helpful in reducing the adverse impacts of GLOFs events in Passu sub-watershed.  The results can also assist decision makers to develop a mechanism for reliable and cost effective monitoring of glacier lakes and GLOFs hazard and risk assessment using advance geospatial hydrologic/hydraulic modeling techniques.

References

  1. Afsar, S., Abbas, N., & Jan, B. (2013). Comparative study of temperature and rainfall fluctuation in Hunza-nagar District. Journal of Basic & Applied Sciences, 9, 151-156.
  2. Anwar, Y., & Iqbal, J. (2018). Spatio Temporal Change Of Selected Glaciers Along Karakoram Highway From 1994–2017 Using Remote Sensing and GIS Techniques. ISPRS annals of the photogrammetry, remote sensing and spatial information sciences, 4, 7-11.
  3. Ashraf, A., Naz, R., & Roohi, R. (2012). Glacial lake outburst flood hazards in Hindukush, Karakoram and Himalayan Ranges of Pakistan: implications and risk analysis. Geomatics, Natural Hazards and Risk, 3(2), 113-132.
  4. Aslam, A. B., Rana, I. A., Shah, S. S., & Mohuddin, G. (2022). Climate change and glacial lake outburst flood (GLOF) risk perceptions: An empirical study of Ghizer District, Gilgit-Baltistan Pakistan. International Journal of Disaster Risk Reduction, 83, 103392.
  5. Bajracharya, S. R., Mool, P. K., & Shrestha, B. R. (2007). Impact of climate change on Himalayan glaciers and glacial lakes: case studies on GLOF and associated hazards in Nepal and Bhutan. International Centre for Integrated Mountain Development (ICIMOD).
  6. Bolch, T., Buchroithner, M. F., Peters, J., Baessler, M., & Bajracharya, S. (2008). Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery. Natural Hazards and Earth System Sciences, 8(6), 1329-1340.
  7. Clague, J. J., & Evans, S. G. (2000). A review of catastrophic drainage of moraine-dammed lakes in British Columbia. Quaternary Science Reviews, 19(17-18), 1763-1783.
  8. Dilshad, T., Mallick, D., Udas, P. B., Goodrich, C. G., Prakash, A., Gorti, G., ... & Rahman, A. (2019). Growing social vulnerability in the river basins: Evidence from the Hindu Kush Himalaya (HKH) Region. Environmental Development, 31, 19-33.
  9. Haemmig, C., Huss, M., Keusen, H., Hess, J., Wegmüller, U., Ao, Z., & Kulubayi, W. (2014). Hazard assessment of glacial lake outburst floods from Kyagar glacier, Karakoram mountains, China. Annals of Glaciology, 55(66), 34-44.
  10. Huggel, C., Kääb, A., Haeberli, W., Teysseire, P., & Paul, F. (2002). Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps. Canadian Geotechnical Journal, 39(2), 316-330.
  11. Ives, J. D., Shrestha, R. B., & Mool, P. K. (2010). Formation of glacial lakes in the Hindu Kush-Himalayas and GLOF risk assessment (pp. 10-11). Kathmandu: ICIMOD.
  12. Mayer, C., & Schuler, T. V. (2005). Breaching of an ice dam at Qorlortossup tasia, south Greenland. Annals of Glaciology, 42, 297-302.
  13. Mernild, S. H., Beckerman, A. P., Yde, J. C., Hanna, E., Malmros, J. K., Wilson, R., & Zemp, M. (2015). Mass loss and imbalance of glaciers along the Andes Cordillera to the sub-Antarctic islands. Global and Planetary Change, 133, 109-119.
  14. Mool, K. P. (1995). Glacier lake outburst floods in Nepal. J. Nepal Geological Society, Kathmandu, 11, 273-280.
  15. Mool, P. K., Maskey, P. R., Koirala, A., Joshi, S. P., Lizong, W., Shrestha, A. B., ... & Shrestha, R. B. (2011). Glacial lakes and glacial lake outburst floods in Nepal.
  16. Muneeb, F., Baig, S. U., Khan, J. A., & Khokhar, M. F. (2021). Inventory and GLOF susceptibility of glacial lakes in Hunza River Basin, Western Karakorum. Remote Sensing, 13(9), 1794.
  17. O'Connor, J. E., Hardison, J. H., & Costa, J. E. (2001). Debris flows from failures of Neoglacial-age moraine dams in the Three Sisters and Mount Jefferson Wilderness areas, Oregon (No. 1606). US Geological Survey.
  18. Pinglot, J. F., Pourchet, M., Lefauconnier, B., Hagen, J. O., Vaikmäe, R., Punning, J. M., ... & Kameda, T. (1994). Natural and artificial radioactivity in the Svalbard glaciers. Journal of environmental radioactivity, 25(1-2), 161-176.
  19. Quincey, D. J., Lucas, R. M., Richardson, S. D., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2005). Optical remote sensing techniques in high-mountain environments: application to glacial hazards. Progress in Physical Geography, 29(4), 475-505.
  20. Quincey, D. J., Richardson, S. D., Luckman, A., Lucas, R. M., Reynolds, J. M., Hambrey, M. J., & Glasser, N. F. (2007). Early recognition of glacial lake hazards in the Himalaya using remote sensing datasets. Global and Planetary Change, 56(1-2), 137-152.
  21. Qureshi, J. A., Khan, G., Ali, N., Ali, S., ur Rehman, S., Bano, R., ... & Ehsan, M. A. (2022). Spatio-temporal Change of Glacier Surging and Glacier-dammed Lake Formation in Karakoram Pakistan. Earth Systems and Environment, 1-14.
  22. Rasul, G., Chaudhry, Q. Z., Mahmood, A., Hyder, K. W., & Dahe, Q. (2011). Glaciers and glacial lakes under changing climate in Pakistan. Pakistan Journal of Meteorology, 8(15).
  23. Rehman, Q. U., Ahmed, W., Waseem, M., Khan, S., Farid, A., & Shah, S. H. A. (2021). Geophysical investigations of a potential landslide area in Mayoon, Hunza District, Gilgit-Baltistan, Pakistan. Rudarsko-geološko-naftni zbornik, 36(3).
  24. Richardson, S. D., & Reynolds, J. M. (2000). An overview of glacial hazards in the Himalayas. Quaternary International, 65, 31-47.
  25. Saifullah, M., Liu, S., Adnan, M., Ashraf, M., Zaman, M., Hashim, S., & Muhammad, S. (2020). Risks of glaciers lakes outburst flood along China Pakistan economic corridor. In Glaciers and the Polar Environment. IntechOpen.
  26. Westoby, M. J., Glasser, N. F., Brasington, J., Hambrey, M. J., Quincey, D. J., & Reynolds, J. M. (2014). Modelling outburst floods from moraine-dammed glacial lakes. Earth-Science Reviews, 134, 137-159.