Vol. 3 No. 2 (2023)
Articles

On Rational and Irrational Values of Trigonometric Functions

Published 2023-09-30

Keywords

  • Trigonometry,
  • Trigonometric Functions,
  • Rational Number,
  • Irrational Number

How to Cite

Akarsu, V. (2023). On Rational and Irrational Values of Trigonometric Functions. Advanced Geomatics, 3(2), 56–62. Retrieved from https://publish.mersin.edu.tr/index.php/geomatics/article/view/988

Abstract

The beginning of trigonometry goes back 4000 years from today. Today, there are Euclidean and Non-Euclidean trigonometry. It can be said that trigonometry emerged from the need to make maps containing the position information of the stars, to determine the time and to make a calendar, mostly in astronomy. Each of the six trigonometric functions is defined according to the directed plane angle. For each angle in the domain of these functions, their values correspond to a real number consisting of rational or irrational numbers. Trigonometric functions have an important position in basic sciences and technology as well as calculations in engineering and architecture. In addition to being a branch of mathematics, trigonometry is widely used in solving geometry and analysis problems. It has an indispensable importance in engineering and architectural design and calculations. The values of trigonometric functions are usually an irrational number, with the exception of some special angle values. Irrational numbers are numbers that are not proportional. In other words, they are numbers whose results are uncertain. Examples are numbers such as pi, e, and radical. The irrational values of trigonometric functions, which are infinite decimal expansions, are given in the tables by rounding them to only four or six digits. When entering the trigonometric function values in the tables (or the values obtained in the libraries of electronic calculators) into algebraic operations, the resulting numbers are approximated. In the article, besides showing that most of the trigonometric function values such as sinθ, cosθ and tanθ of many θ angles are irrational, the effect of these functions on the result values of calculations made in engineering and architecture is interpreted.

References

  1. Akarsu, V. (2005). Geometride, Uzay, Düşey ve Yatay Açılar Arasındaki Fonksiyonel İlişki, Selcuk Üniversity Journal of Engineering Sciences, 4(3), 134-142.
  2. Akarsu, V. (2009). Düzlem Üçgende Açıların Kenarlardan Bulunması, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 25(1), 390-399.
  3. Alptekin, A., & Yakar, M (2020). Heyelan bölgesinin İHA kullanarak modellenmesi. Türkiye İnsansız Hava Araçları Dergisi, 2(1), 17-21.
  4. Alptekin, A., Çelik, M. Ö., Doğan, Y., & Yakar, M. (2019). Mapping of a rockfall site with an unmanned aerial vehicle. Mersin Photogrammetry Journal, 1(1), 12-16.
  5. Barnet, R. A. (1991). Analytic Trigonometry with Applicattions, Wadsworth Publishing Company, Belmont, California, 431.
  6. Beasley, R. D. (1858). Plane Trigonometry, Cambridge: Macmillan and Co., London, 106.
  7. Bergen, J. (2009). Values of Trigonometric Functions, Math Horizons, 16(3), 17-19, DOI: 10.1080/10724117.2009.11974811
  8. Britton, J. P., Proust, C., & Shnider, S. (2011). Plimpton 322: a review and a different perspective. Archive for history of exact sciences, 65, 519-566.
  9. Daut, W. (1951). Ebene Trigonometrie, Paedagogischer Verlag Berthold Schulz, Berlin-Hannover-Frankfurt/Mein, 212.
  10. Dörrie, H. (1950). Ebene und Sphaerische Trigonometrie, Verlag Von R. Oldenbourg, München, 518s.
  11. Durell, C. V. (1975). Matriculation Trigonometry, G. Bell and Sons, Ltd, London, 151s.
  12. Gölgeleyen F., & Akarsu V (2022). İnsan Aklının Evrimi: Lebombo Mağarası’ndan Mouseion’a Matematiğin Serüveni, Türkiye’de Mühendislik ve Mimarlığın 250 Yılı Uluslararası Sempozyumu, 19-21 Mayıs, İTÜ, İstanbul.
  13. Helton, F. F. (1972). Analytic Trigonometry, W.B. Saunders Company, Philadelphia-London-Toronto, 297.
  14. Jung, H. W. E. (1962). Sayılar Teorisine Giriş, Türk Matematik Derneği Yayınları, Çeviren: Orhan Ş. İçen, 176.
  15. Mansfield, D. F., & Wildberger, N. J. (2017). Plimpton 322 is Babylonian exact sexagesimal trigonometry. Historia Mathematica, 44(4), 395-419.
  16. Maune, D. F. (2001) Digital elevation model technologies and applications: The DEM User manual. The American Society for Photogrammetry and Remote Sensing. ISBN:1-57083-064-9
  17. Niven, I. M. (1956). Irrational Numbers. Wiley, New York.
  18. Niven, I. M. (1964). Rasyonel ve İrrasyonel Sayılar, Çeviri: Adnan Kıral, Türk matematik Derneği Yayınları, 192s.
  19. Paolillo, B., & Vincenzi, G. (2021). On the rational values of trigonometric functions of angles that are rational in degrees. Mathematics Magazine, 94(2), 132-134.
  20. Pellicani, R., Spilotro, G., & Van Westen, C. J. (2016). Rockfall trajectory modeling combined with heuristic analysis for assessing the rockfall hazard along the Maratea SS18 coastal road (Basilicata, Southern Italy). Landslides, 13, 985-1003.
  21. Sigl, R. (1977). Ebene und Sphaerische Trigonometrie mit Anwendungen auf Kartographie, Geodaesie und Artonomie, Herbert Wichman Verlag, Karlsruhe, 50-55, 473.
  22. Stewart I (2009). Timing The Infinite: The Story of Mathematics, Quercus, 336s.
  23. Ulvi, A., Varol, F. i., Yiğit, A. Y. (2019). 3D modeling of cultural heritage: the example of Muyi Mubarek Mosque in Uzbekistan (Hz. Osman’s Mushafi). International Congress on Cultural Heritage and Tourism (ICCHT), 115-123, Bishkek, Kyrgyzstan.
  24. Van Brummelen, G. (2012). Heavenly mathematics: The forgotten art of spherical trigonometry. Princeton University Press.
  25. Yakar, M (2011). Using close range photogrammetry to measure the position of inaccessible geological features. Experimental Techniques, 35(1), 54-59.