Exploration of the Cu-Pb-Zn deposit via using IP/Resistivity methods in Kavşut (Göksun-Kahramanmaraş)

Main Article Content

Cihan Yalçın
Hurşit Canlı
Kıvanç Haznedaroğlu
Filiz Akbulut


In the domain of mineral exploration, the identification and characterization of economically viable ore deposits are fundamental challenges. Copper (Cu), lead (Pb), and zinc (Zn) deposits play a crucial role in global metal supply chains, and their exploration demands innovative and reliable methodologies. In this scientific article, we present an inclusive study on the exploration of Cu-Pb-Zn deposits using the induced polarization (IP) and resistivity methods. By combining these geophysical techniques, we aim to enhance the accuracy and efficiency of mineral resource assessment, ultimately contributing to sustainable mining practices and resource management.  Türkiye, with its tectonic structure, encompasses significant orogenic belts, and notable ore deposits are found along the well-known Tethys metallogenic belt. Cu-Zn-Pb (polymetallic) mineralization can be found in various areas along this tectonic belt. One such occurrence of polymetallic enrichment is observed southeast of Kavşut (Göksun, Kahramanmaraş-Türkiye), which is also situated within the Tethys metallogenic belt. In this region, the Goksun ophiolites form the basement, overlain by the Malatya Metamorphites with a tectonic contact. The mineralization is predominantly observed in fracture cracks and karstic gaps within carbonate rocks. To investigate the geometry and distribution of this mineralization underground, IP/Resistivity studies were conducted. The results indicate that the sulfide mineralization exhibit a high rechargeability character. Cross-sections, two-dimensional level maps, and 3D maps were generated based on the electrical data acquired, enabling effective planning and coordination for mining operations in the area. This visual information proves invaluable for the mining activities conducted in the region.

Article Details

How to Cite
Yalçın, C. ., Canlı , H. ., Haznedaroğlu , K. ., & Akbulut , F. . (2023). Exploration of the Cu-Pb-Zn deposit via using IP/Resistivity methods in Kavşut (Göksun-Kahramanmaraş). Advanced Engineering Science, 3, 151–163. Retrieved from https://publish.mersin.edu.tr/index.php/ades/article/view/1208


Reynolds, J. M. (2011). An introduction to applied and environmental geophysics. 2nd Edition, John Wiley & Sons.

Loke, M. H., Chambers, J. E., Rucker, D. F., Kuras, O., & Wilkinson, P. B. (2013). Recent developments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics, 95, 135-156.


Loke, M. H., & Barker, R. D. (1996). Rapid least‐squares inversion of apparent resistivity pseudosections by a quasi‐Newton method1. Geophysical Prospecting, 44(1), 131-152.


Dusabemariya, C., Qian, W., Bagaragaza, R., Faruwa, A. R., & Ali, M. (2020). Some experiences of resistivity and induced polarization methods on the exploration of sulfide: A review. Journal of Geoscience and Environment Protection, 8, 68-92. https://doi.org/10.4236/gep.2020.811004

Olowofela, J. A., Ajani, O. O., & Oladunjoye, M. A. (2008). Application of induced polarization method to delineate sulphide ore deposit in Osina area of Benue state, Nigeria. Ife Journal of Science, 10(1), 137-150.

Alilou, S. K., Norouzi, G. H., Doulati, F., & Abedi, M. (2014). Application of magnetometery, electrical resistivity and induced polarization for exploration of polymetal deposits, a case study: Halab Dandi, Zanjan, Iran. 2nd International Conference on Advances in Engineering Sciences and Applied Mathematics ICAESAM, 1-5.

Biswas, A. (2017). A review on modeling, inversion and interpretation of self-potential in mineral exploration and tracing paleo-shear zones. Ore Geology Reviews, 91, 21-56.


Evrard, M., Dumont, G., Hermans, T., Chouteau, M., Francis, O., Pirard, E., & Nguyen, F. (2018). Geophysical investigation of the Pb–Zn deposit of Lontzen–poppelsberg, Belgium. Minerals, 8(6), 233.


Riva, R., Ralay, R., & Boni, R. (2019). Evaluation of flake graphite ore using self-potential (SP), electrical resistivity tomography (ERT) and induced polarization (IP) methods in east coast of Madagascar. Journal of Applied Geophysics, 169, 134-141. https://doi.org/10.1016/j.jappgeo.2019.07.001

Langore, L., Alikaj, P., & Gjovreku, D. (1989). Achievements in copper sulphide exploration in Albania with IP and EM methods. Geophysical Prospecting, 37, 975-991.


Yoshioka, K., & Zhdanov, M. S. (2005). Three-dimensional nonlinear regularized inversion of the induced polarization data based on the Cole–Cole model. Physics of the Earth and Planetary Interiors, 150(1-3), 29-43. https://doi.org/10.1016/j.pepi.2004.08.034

Sono, P., Nthaba, B., Shemang, E. M., Kgosidintsi, B., & Seane, T. (2021). An integrated use of induced polarization and electrical resistivity imaging methods to delineate zones of potential gold mineralization in the Phitshane Molopo area, Southeast Botswana. Journal of African Earth Sciences, 174, 104060.


Moreira, C. A., Lopes, S. M., Schweig, C., & da Rosa Seixas, A. (2012). Geoelectrical prospection of disseminated sulfide mineral occurrences in Camaquã sedimentary basin, Rio Grande do Sul state, Brazil. Brazilian Journal of Geophysics, 30(2), 169-179. http://dx.doi.org/10.22564/rbgf.v30i2.90

Rao, G. S., Arasada, R. C., Sahoo, P. R., & Khan, I. (2019). Integrated geophysical investigations in the Mudiyawas–Khera block of the Alwar basin of North Delhi Fold Belt (NDBF): Implications on copper and associated mineralisation. Journal of Earth System Science, 128, 161. https://doi.org/10.1007/s12040-019-1193-7

Janković, S. (1997). The Carpatho-Balkanides and adjacent area: a sector of the Tethyan Eurasian metallogenic belt. Mineralium Deposita, 32, 426-433. https://doi.org/10.1007/s001260050110

Yigit, O. (2012). A prospective sector in the Tethyan Metallogenic Belt: Geology and geochronology of mineral deposits in the Biga Peninsula, NW Turkey. Ore Geology Reviews, 46, 118-148.


Yılmaz, A., Bedi, Y., Uysal, Ş., Yusufoğlu, H., Atabey, E. & Aydın, N. (1992). Doğu Toroslar’da Uzunyayla ile Beritdağı arasının jeolojisi: MTA Genel Müdürlüğü Rapor No: 9543, Ankara

Perinçek, D. & Kozlu, H. (1984). Afşin-Elbistan-Doğanşehir dolayının stratigrafisi ve bölgedeki birliklerin yapısal ilişkileri: TPAO Rapor No: 1909, Ankara

Mengeloğlu, M. (1999). K.Maraş–Elbistan yöresi genel jeokimya raporu. MTA Genel Müdürlüğü Rapor No: 10245, Ankara.

Tüfekçi, Ş. & Dumanlılar, İ. (2011). Afşin-Elbistan civarı jeokimya ve prospeksiyon raporu. MTA Genel Müdürlüğü Rapor No: 11388, Ankara

Adejuwon, B. B., Obasi, I. A., & Salami, A. A. (2021). Integrated geophysical study for mapping Pb–Zn sulfide deposits in Asu River Group shales in Nkpuma-Ekwoku, Abakaliki area, southeastern Nigeria. Arabian Journal of Geosciences, 14(14), 1385. https://doi.org/10.1007/s12517-021-07770-4

Elem, J. C., & Anakwuba, E. K. (2022). Application of ground magnetics and geoelectrical methods in delineating sulphide deposit in Oshiri area, southeastern Nigeria. Global Journal of Geological Sciences, 20(1), 69-82.

Ezeh, C. C., & Ikegbunam, I. C. (2022). Delineation of potential zones of lead-zinc mineralization in Uburu Ohaozara L.G.A South Eastern Nigeria, using electrical resistivity tomography and induced polarization methods. International Journal of Physical Sciences, 17(3), 121-130. https://doi.org/10.5897/IJPS2022.5013

Yapıcı, N., Güneyli, H. & Karakılçık, H. (2015). Fakılar boksit cevher özellikleri ve potansiyeline ait ilk bulgular (Çamlıyayla/Mersin). Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 30(2), 55-64. https://doi.org/10.21605/cukurovaummfd.242768

Yalçın, C., & Canlı, H. (2023). Investigating the Yahyalı (Kayseri, Türkiye) Pb-Zn deposit by using IP/Resistivity methods. Advanced Engineering Days (AED), 7, 69-72.

Yalçın, C., Canlı, H., Haznedaroğlu, K., & Akbulut, F. (2023). Investigating the Kavşut (Göksun-Kahramanmaraş) Cu-Pb-Zn deposit by using IP/Resistivity methods. Advanced Engineering Days (AED), 7, 73-76.