Vol. 2 No. 1 (2022)
Articles

GNSS Frequency Availability Analysis

Ceren Konukseven
Necmettin Erbakan University

Published 2022-03-30

Keywords

  • BeiDou,
  • Galileo,
  • GLONASS,
  • GPS

How to Cite

Konukseven, C., Öğütcü, S. ., & Alçay, S. . (2022). GNSS Frequency Availability Analysis. Advanced Geomatics, 2(1), 14–16. Retrieved from https://publish.mersin.edu.tr/index.php/geomatics/article/view/235

Abstract

In this study, three RINEX-3 daily observation data in 2021 were investigated in terms of the frequency availability of Global Navigation Satellite System (GNSS). All available frequencies in the RINEX-3 header were chosen to investigate for GPS, GLONASS, Galileo, and BDS data. The results showed that average frequency availability can be varied significantly among the frequencies and GNSSs. Availability of Galileo frequencies were found higher than the other GNSSs among the examined RINEX files.       

References

  1. Alcay, S., Ogutcu, S., Kalayci, I. & Yigit, C. O. (2019). Displacement monitoring performance of relative positioning and Precise Point Positioning (PPP) methods using simulation apparatus. Advances in Space Research, 63(5), 1697-1707.
  2. Altuntaş, C. & Tunalıoğlu, N. (2022). Retrieving the SNR metrics with different antenna configurations for GNSS-IR. Turkish Journal of Engineering, 6 (1) , 87-94. DOI: 10.31127/tuje.870620
  3. Chen, C. & Chang, G. (2021). PPPLib: An open-source software for precise point positioning using GPS, BeiDou, Galileo, GLONASS, and QZSS with multi-frequency observations. GPS Solutions, 25(1), 1-7.
  4. Duong, V., Harima, K., Choy, S., Laurichesse, D. & Rizos, C. (2019). Assessing the performance of multi-frequency GPS, Galileo and BeiDou PPP ambiguity resolution. J. Spat. Sci. 65, 61–78
  5. Geng, J. & Bock, Y. (2013). Triple-frequency GPS precise point positioning with rapid ambiguity resolution. J. Geod. 2013, 87, 449–460
  6. Guo, J., Li, X., Li, Z., Hu, L., Yang, G., Zhao, C. & Ge, M. (2018). Multi-GNSS precise point positioning for precision agriculture. Precision agriculture, 19(5), 895-911.
  7. Kaya, F., Özdemir, A., Demir, D. & Doğan, U. (2019). GNSS Gözlem Süresine Bağlı Deformasyon Parametrelerinin Kestirimi. Geomatik, 4(3), 227-238. DOI: 10.29128/geomatik.544633
  8. Konak, H., Küreç Nehbit, P., Karaöz, A. & Cerit, F. (2020). Interpreting deformation results of geodetic network points using the strain models based on different estimation methods. International Journal of Engineering and Geosciences, 5 (1) , 49-59. DOI: 10.26833/ijeg.581584
  9. Liu, G., Zhang, X. & Li, P. Improving the performance of Galileo uncombined precise point positioning ambiguity resolution using triple-frequency observations. Remote Sens. 11, 341.
  10. Mutlu, İ. & Kahvecı, M. (2019). GNSS Uydu Dağılımının Gerçek Zamanlı Kinematik GNSS ve Ağ-RTK Ölçülerindeki Önemi. Geomatik, 4 (3) , 179-189. DOI: 10.29128/geomatik.522343
  11. Wanninger, L. (2018). Detection of RINEX-2 files with mixed GPS L2P (Y)/L2C carrier phase observations. Sensors, 18(12), 4507
  12. Yilmaz, M., Turgut, B., Gullu, M. & Yilmaz, İ. (2016). Evaluation of recent global geopotential models by GNSS/levelling data: Internal Aegean region. International Journal of Engineering and Geosciences, 1 (1), 18-23. DOI: 10.26833/ijeg.285221