Enhancing Ground Point Extraction in Airborne LiDAR Point Cloud Data Using the CSF Filter Algorithm
Published 2023-09-30
Keywords
- Remote Sensing,
- CSF Filter,
- Point Cloud,
- SAM,
- LIDAR
How to Cite
Abstract
Airborne laser scanning (ALS) is a remote sensing method widely recognized for its efficiency in acquiring data quickly and delivering accurate results. To ensure the reliability of ALS data, effective decontamination is crucial. This study aims to enhance the data quality of three distinct LIDAR datasets representing urban, rural, and forest environments by applying the CSF Filter algorithm in the CloudCompare software, an open-source tool widely used in point cloud processing. The impact of various data characteristics and input parameters on the filtering results was assessed through a series of comprehensive tests. The results of our analysis revealed a notable relationship between the selected parameters and the quality of the filtered data. Specifically, when the cover value within the CSF Filter parameters was increased, a corresponding increase in data loss was observed, leading to significantly flawed outcomes. These findings emphasize the importance of carefully selecting and fine-tuning the input parameters to avoid undesirable consequences. The findings underscore the importance of combining automated filtering algorithms with manual cleaning to achieve high-quality and reliable point cloud data for various geospatial analyses and applications.
References
- Adjiski, V., Kaplan, G. & Mijalkovski, S. (2023). Assessment of the solar energy potential of rooftops using LIDAR datasets and GIS based approach. International Journal of Engineering and Geosciences, 8(2), 188-199.
- Bjørke, J. T. (2010). Digitale terrengmodeller universitetet for miljø og biovitenskap.
- Briese, C. (2010). Extraction of digital terrain models. Airborne and Terrestrial Laser Scanning, 135-167. https://repositum.tuwien.at/handle/20.500.12708/26779
- Çelik, H., Baş, N. & Coşkun, H. G. (2014). Taşkın modelleme ve risk anaizinde LİDAR verisiyle sayısal yükseklik modeli üretimi. Gümüşhane Üniversitesi Fen Bilimleri Enstirüsü Dergisi, 4(1), 117. https://doi.org/10.17714/GUFBED.2014.04.009
- Civelekoğlu, B. (2015). Hava LİDAR verilerinin sınıflandırılması ve orman ağaçlarına ait öznitelik değerlendirilmesi İstanbul Belgrad Orman Örneği. Master’s Thesis, Yildiz Techinical University, Istanbul (in Turkish).
- Cömert, R., Avdan, U., Tün, M. & Ersoy, M. (2012). Mimari belgelemede yersel lazer tarama yönteminin uuygulanması (Seyitgazi Askerlik Şubesi Örneği). Harita Teknolojileri Elektronik Dergisi, 4(1), 1-18.
- Doğruluk, M., Coşkun Aydin, C. & Yanalak, M. (2018). Kırsal alanlarda SYM üretiminde filtreleme yöntemlerinin performans analizi: Hava LİDAR uygulaması; İstanbul Örneği. Geomatik Dergisi, 3(3), 242-253. https://doi.org/10.29128/geomatik.414412
- Ekercin, S. & Üstün, B. (2004). Uzaktan algılamada yeni bir teknoloji: LİDAR. HKM Jeodezi Jeoinformasyon Arazi Yönetimi Dergisi, 0(91), 34-38. https://search/yayin/detay/59216
- Erişir, Z. (2015). Nokta tabanlı sınıflandırma yöntemleri ile LİDAR verilerinin sınıflandırılması. Master’s Thesis, Yildiz Techinical University, Istanbul (in Turkish).
- Fidan, D. & Fidan, Ş. (2021). Yersel lazer tarama teknolojileriyle oluşturulan 3B modellerin akıllı kent uygulamalarında kullanımı: Mersin Süslü Çeşme Örneği. Türkiye LİDAR Dergisi, 3(2), 48-57. https://doi.orrg/10.51946/melid.1021819
- Fröhlich, C., Mettenleiiter, M., Härtl, F., Dalton, G. & Hines, D. (2000). Imaging laser radar for 3D modelling of real World environments. Sensor review, 20(4), 273-282. https://doi.org/10.1108/02602280010351019
- Gonçalves, G. R. & Pereira, I. G. (2010). Assessment of the performance of eight filtering algorithms by using full-waveform LİDAR data of unmanaged eucalypt forest. Silvilaser, 187-196. https:/www.researchgate.net/publication/353307644
- Gümüş, K. & Erkaya, H. (2007). Mühendislik uygulamalarında kullanılan yersel lazer tarayıcı sistemler. TMMMOB Harita ve Kadastro Mühendisleri Odası 11.Türkiye Harita Bilimsel ve Teknik Kurultayı 2-6 Nisan.
- Habib, A. & Rens, J. V. (2017). Quality assurance and quality control of LİDAR systems and derived data. Advanced LİDAR Workshop, University of Northern Iowa, 10, 269-294. https://doi.org/10.1201/9781420051438.CH9
- Haralick, R. M. & Shapiro, L. G. (1992). Computer and robot vision. In addison wesley: Reading. Longman Publishing Co. Inc. https://scholar.google.com.tr/citations?hl=tr&user=X8NqGhsAAAAJ&view_op=li st_works&sortby=pubdate
- Haugerud, R. A. & Harding, D. J. (2001). Some algorithms for virtual deforestation (VDF) of LİDAR topographic survey data. International Archives of Photogrammetry and Remote Sensing, 211-217. http://pugetsoundLIDAR.org
- Hill, J., Graham, L., Henry, R., Cotter, D. & Young, D. (2000). Wide-area topographic mapping and applications using airbone light detection and ranging (LIDAR) technology. Photogrammetric Engineering and Remote Sensing, 66, 908-914.
- Kaplan, G., Comert, R., Kaplan, O., Matci, D. K. & Avdan, U. (2022). Using machine learning to extract building inventory information based on LİDAR data. ISPRS International Journal of Geo-Information, 11(10). https:doi.org/10.3390/IJGI111005117
- Karasaka, L. & Keleş, H. (2000). CSF (Cloth simulation filtering) algoritmasının zemin noktalarını filtrelemedki performans analizi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 267-275. https://doi.org/10.35414/akufemubid.660828
- Kobler, A., Preifer, N., Ogrinc, P., Todorovski, L., Oštir, K. & Džeroski, S. (2007). Repetitive interpolation: A robust algorithm for DTM generation from Aerial Laser Scanner Data in forested terrain. Remote Sensing of Environment, 108(1), 9-23. https://doi.org/10.1016/J.RSE.2006.10.013
- Kostrikov, S. (2019). Urban remote sensing wiith LIDAR fort he Smarth City Concept implementation. Visnyk of V. N. Karazin Kharkiv National University, Series ‘Geology, Geography, Ecology’, 50. https://doi.org/10.26565/2410-7360-2019-50-08
- Lichti, D. D. & Gordon, S. J. (2004). Error Propagation in directly georeferenced terrestrial laser scanner point clouds for cultural heritage recording. FIG Working Week.
- Liu, X. (2008). Airbone LİDAR for DEM generation: some critical issues. http://Dx.Doi.Org/10.1177/0309133308089496, 32(1), 31-49. https://doi.org/10.1177/0309133308089496
- Lu, Y., Wang, X., Zhou, K. & Yang, J. (2011). MATLAB tools for LIDAR data conversion, visualization and processing. In X. He, J. Xu & V.G. Ferreira (Eds), International Symposium on LIDAR and Radar Mapping 2011: Technologies and Applications. https://doir.org/10.2228/12.912529
- Maliqi, E., Penev, P. & Kelmendi, F. (2017). Creating and analysing the digital terrain model of the slivovo area using QGIS Sofware. Geodesy and Cartography, 43(3), 111-117. https://doi.org/10.3846/20296991.2017137645
- Maune, D. (2011). Digital elevaion model (DTM) whiepaper NRCS high resolution elevation data. USDA Natural Resources Conversation Service National Geospatial Management Center.
- Meng, X., Currit, N. & Zhao, K. (2010). Ground filtering algorithms for airbone LIDAR data: A review of critical issues. Remote Sensing, 2010, 2(3), 833-860. http://doi.org/10.3390/RS2030833
- Pedersen, V. F. (2022). Filtering av LIDAR-punktsky for opprettelse av nøyaktig DTM: en prestasjonsanalyse av to punktskybehandlingssystem, Master’s Thesis, miljø- og biovitenskapelige universitet.
- Podobnikar, T. & Vrečko, A. (2012). Digital elevation model from the best results of different filtering of a LIDAR point cloud. Transaction in GIS, 16(5), 603-617. https://doi.org/10.1111/J.1467-9671.2012.01335.X
- Reshetyuk, Y. (2009). Self-calibration and direct georeferencing in terrestrial laser scanning. Doctoral Thesis, Royal Institute of Technology (KTH), Department of Transport and Economics Division of Geodesy.
- Sinadinovski, C., Markušić, S., Stanko, D., McCue, K. F. & Pekevski, L. (2022). Seismic analysis of moderate size earthquakes recorded on stations at close epicentral distances. Applied Sciences, 12(1), 470. https://doi.org/10.3390/APP12010470
- Sithole, G. & Vosselman, G. (2005). Filtering of airbone laser scanner data based on segmented point clouds. Interational Institute for Geo-Information Science and Earth Obseervation, 66-71. https://research.utwente.nl/en/publications/filteringof-airborne-laser-scanner-data-based-on-segmented-point
- Soycan, M., Tunalıoğlu Öcalan, T., Soycan, A. & Gümüş, K. (2011b). Three dimensional modeling of a forested area using aan airbone light detection and ranging method. Arabian Journal for Science and Engineering, 36(4), 581-595. https://doi.org/10.1007/S13369-011-0054-8/METRICS
- Süleymanoğlu, B. & Soycan, M. (2017). Hava LİDAR verilerinde kullanılan filtreleme algoritmalarının incelenmesi.
- Uray, F. (2016). Hava LİDAR nokta bulutu verileri filtreleme algoritmalarının geliştirilmesi ve performanslarının karşılaştırılması. Master’s Thesis, Necmettin Erbakan Universiyt, Konya (in Turkey).
- Uray, F. (2022). Derin öğrenme tekniklerini kullanarak hava LİDAR nokta bulutlarının sınıflandırılması. Doctoral Thesis, Necmettin Erbakan University, Konya (in Turkey).
- Vosselman, G. & Maas, H. G. (2010). Airbone and terrestrial laser scanning. Whittles Publishing. https://www.whittlespublishing.com/Airborne_and_Terrestrial_Laser_Scanning
- Wehr, A. & Lohr, U. (1999). Airbone laser scanning – An introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3), 68-82. https://doi.org/10.1016/S0924-2716(99)00011-8