Sensor technologies in unmanned aerial vehicles: types and applications

Main Article Content

Osman Villi
Murat Yakar

Abstract

Applications of unmanned aerial vehicles (UAVs) with various sensor system, have been steadily increasing. Initially, only sensors necessary for the safe flight of UAVs were employed. However, in recent years, sensor types with advanced environmental perception capabilities have been developed and integrated into UAVs. The development of sensor types and their reduced size has facilitated their integration into UAV systems and encouraged various scientific studies. UAVs equipped with sophisticated sensors find applications in a wide range of fields. These include precision agriculture applications such as monitoring crop health and determining soil moisture content, forest fire detection, natural disaster monitoring, search and rescue operations and meteorological measurements. This study provides insights into the types of sensors found in UAVs, followed by a review of relevant literature. Finally, future expectations and prospects are outlined.

Downloads

Download data is not yet available.

Article Details

How to Cite
Villi, O., & Yakar, M. (2024). Sensor technologies in unmanned aerial vehicles: types and applications. Advanced UAV, 4(1), 1–18. Retrieved from https://publish.mersin.edu.tr/index.php/uav/article/view/1538
Section
Articles

References

Menteşoğlu, B. E., & İnan, M. (2016). İnsansız hava araçlarının (İHA) ormancılık uygulamalarında kullanımı. VI. Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Sempozyumu (UZAL-CBS 2016), 5-7 Ekim 2016, Adana.

Jouaneh, M. (2013). Fundamentals of mechatronics. Cengage Learning.

Kahveci, M., & Can, N. (2017). İnsansız hava araçları: tarihçesi, tanımı, dünyada ve Türkiye’deki yasal durumu. Selçuk Üniversitesi Mühendislik ve Teknoloji Dergisi, 5(4), 511-535.

https://doi.org/10.15317/Scitech.2017.109

Villi, O., & Yakar, M. (2022). İnsansız hava araçlarının kullanım alanları ve sensör tipleri. Türkiye İnsansız Hava Araçları Dergisi, 4(2), 73-100. https://doi.org/10.51534/tiha.1189263

MH Tech (2024). Dual sensor UAV payload. http://www.mh-elec.com/photo-x.php?id=237. Accessed: 17.02.2024.

DJI (2024). DJI Mavic 3 Pro. https://www.dji.com/global/mavic-3-pro. Accessed: 17.02.2024.

Yavuz, H. (2020). Mekatronik mühendisliğine giriş. Papatya Bilim Yayınevi, 2, ISBN: 9786059594523, 628s.

Fruugo (2024). Holybro M8n Gps module tri-ed led indicator for Pixhawk Pix32 F Rc rotor plane. https://www.fruugo.com.tr/holybro-m8n-gps-module-tri-ed-led-indicator-for-pixhawk-pix32-f-rc-rotor-plane/p-173207255-370615675?language=en. Accessed: 17.02.2024.

Moghimi, A., Yang, C., & Anderson, J. A. (2020). Aerial hyperspectral imagery and deep neural networks for high-throughput yield phenotyping in wheat. Computers and Electronics in Agriculture, 172, 105299. https://doi.org/10.1016/j.compag.2020.105299

Github (2022). WM220 flight controller and IMU board. https://github.com/o-gs/dji-firmware-tools/wiki/WM220-Flight-Controller-and-IMU-board. Accessed: 18.02.2024.

Giovagnola, J., Megías, J. B. M., Fernández, M. M., Cuéllar, M. P., & Santos, D. P. M. (2023). AirLoop: A simulation framework for testing of UAV services. IEEE Access, 11, 23309-23325.

https://doi.org/10.1109/ACCESS.2023.3253788

Buican, G. R., Zaharia, S. M., Pascariu, I. S., Chicos, L. A., Lancea, C., Pop, M. A., & Stamate, V. M. (2022). Development and implementation of an automated pilot system for a fixed-wing twin-engine airplane UAV. Scientific Research & Education in the Air Force-AFASES, 2022. https://doi.org/10.19062/2247-3173.2022.23.23

Ardupilot (2024). Barometer (external). https://ardupilot.org/copter/docs/common-baro-external.html. Accessed: 18.02.2024.

DJI (2024). Matrice 30 series. https://enterprise.dji.com/matrice-30. Accessed: 18.02.2024.

Px4 (2024). Airspeed sensors. https://docs.px4.io/main/en/sensor/airspeed.html. Accessed: 18.02.2024.

Ifwelovevs (2021). UAV Intelligent Heating Pitot tube Airspeed Meter-Viewpro.

https://ifwelovevs.xyz/product_details/43305115.html. Accessed: 18.02.2024.

Vifly (2024). VIFLY finder V2 - FPV racing drone buzzer. https://viflydrone.com/products/vifly-finder-v2-fpv-racing-drone-buzzer. Accessed: 27.02.2024.

Mydronefleets (2023). MyDroneFleets UAV tracker G2. https://mydronefleets.com/tracker/. Accessed: 27.02.2024.

Büyüksalih, G. (2000). Fotogrametri ve uzaktan algılama uygulamalarında kullanılan video sistemleri ve teknik özellikleri. Harita Dergisi, 123, 41-55.

Liu, W., & Xu, Z. (2020). Some practical constraints and solutions for optical camera communication. Philosophical Transactions of the Royal Society A, 378(2169), 20190191.

https://doi.org/10.1098/rsta.2019.0191

Canon (2024). Image sensors explained. https://www.canon.ie/pro/infobank/image-sensors-explained/. Accessed: 19.02.2024.

Yakar, M., Orhan, O., Ulvi, A., Yiğit, A. Y., & Yüzer, M. M. (2015). Sahip Ata Külliyesi rölöve örneği. TMMOB Harita ve Kadastro Mühendisleri Odası, 15. Türkiye Harita Bilimsel ve Teknik Kurultayı, 25­28 Mart 2015, Ankara.

Robocraze (2023). 3 Axis FPV camera brushless gimbal with control board.

https://robocraze.com/products/3-axis-fpv-camera-brushless-gimbal-with-control-board. Accessed: 19.02.2024.

Apb News (2018). Digital technologies art of storytelling. https://apb-news.com/wp-content/uploads/2019/01/APB_JAN-FEB_2018.pdf. Accessed: 19.02.2024.

Villi, O. (2019). İnsansız hava araçlarında çok bantlı kamera entegrasyonu ve tarımsal uygulamaları. Yüksek Lisans Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana, 89s.

Donmez, C., Villi, O., Berberoglu, S., & Cilek, A. (2021). computer vision-based citrus tree detection in a cultivated environment using UAV imagery. Computers and Electronics in Agriculture, Volume 187 (2021), 106273. https://doi.org/10.1016/j.compag.2021.106273

Verhoeven, G. (2017). The reflection of two fields – electromagnetic radiation and its role in (aerial) imaging. 55. 13-18. 10.5281/zenodo.3534245.

Akkamış, M., & Çalışkan, S. (2020). İnsansız hava araçları ve tarımsal uygulamalarda kullanımı. Türkiye İnsansız Hava Araçları Dergisi, 2(1), 8-16.

Ge, X., Wang, J., Ding, J., Cao, X., Zhang, Z., Liu, J., & Li, X. (2019). Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring. PeerJ, 7, e6926. https://doi.org/10.7717/peerj.6926

Aydin, B., Selvi, E., Tao, J., & Starek, M. J. (2019). Use of fire-extinguishing balls for a conceptual system of drone-assisted wildfire fighting. Drones 2019, 3(1), 17. https://doi.org/10.3390/drones3010017

Kusak, L., Unel, F., Alptekin, A., Celik, M., & Yakar, M. (2021). Apriori association rule and k-means clustering algorithms for interpretation of pre-event landslide areas and landslide inventory mapping. Open Geosciences, 13(1), 1226-1244. https://doi.org/10.1515/geo-2020-0299

Ok, A. O., & Ozdarici-Ok, A. (2017). Detection of citrus tree from UAV DSMS. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-1/W1, 2017 ISPRS Hannover Workshop: HRIGI 17 – CMRT 17 – ISA 17 – EuroCOW 17, 6–9 June 2017, Hannover, Germany. https://doi.org/10.5194/isprs-annals-IV-1-W1-27-2017

DJI (2024). P4 Multispectral. https://www.dji.com/global/p4-multispectral. Accessed: 19.02.2024.

Drone Nerds (2024). MicaSense sensors agricultural sensors. https://enterprise.dronenerds.com/drone-payloads-sensors-1/micasense/. Accessed: 19.02.2024.

Optosky (2024). VIS-NIR hyperspectral camera. https://optosky.com/vis-nir-hyperspectral-camera.html. Accessed: 19.02.2024.

Yakar M & Villi O. (2023). İnsansız hava aracı uygulama alanları. Mersin Üniversitesi Harita Mühendisliği Kitapları.

DJI (2024). The basics of thermal drones. https://enterprise-insights.dji.com/blog/thermal-drone-basics. Accessed: 19.02.2024.

Copters (2024). Flir thermal cameras. https://www.copters.eu/50-flir-thermal-cameras. Accessed: 19.02.2024.

Raj, T., Hanim Hashim, F., Baseri Huddin, A., Ibrahim, M. F., & Hussain, A. (2020). A survey on LiDAR scanning mechanisms. Electronics, 9(5), 741. https://doi.org/10.3390/electronics9050741

Wikipedia (2021). LIDAR. https://tr.wikipedia.org/wiki/LIDAR. Accessed: 19.02.2024.

Başarsoft (2024). Lidar nedir? https://www.basarsoft.com.tr/lidar. Accessed: 19.02.2024.

Utmel (2021). How does Lidar work? https://www.utmel.com/blog/categories/sensors/how-does-lidar-work. Accessed: 19.02.2024.

Mandlburger, G., Pfennigbauer, M., Steinbacher, F., & Pfeifer, N. (2011). Airborne hydrographic LiDAR mapping–potential of a new technique for capturing shallow water bodies. In Proceedings of the 19th International Congress on Modelling and Simulation, Perth, Australia (pp. 12-16).

Phoenix Lidar Systems (2024). HydroRanger airborne topo-bathymetric (ATB) dual measurement solution. https://phoenixlidar.com/hydroranger/#full-specification-section. Accessed: 18.04.2024.

Şimşek S (2019). Pasif algılamalı insansız hava aracı ile oblik geometri temelli 3b mobil kent modeli üretimi; sorunlar ve çözüm önerileri. Yüksek Lisans Tezi, Zonguldak Bülent Ecevit Üniversitesi, Fen Bilimleri Enstitüsü, Zonguldak, 51s.

Leica Geosystems (2024). Leica CityMapper-2 high-performance urban mapping sensor. https://leica-geosystems.com/products/airborne-systems/hybrid-sensors/leica-citymapper-2. Accessed: 18.04.2024.

DJI (2024). Agras T10 the ideal drone for new farmers. https://www.dji.com/global/t10?site=ag. Accessed: 18.04.2024.

Budge, M. C., & German, S. R. (2020). Basic RADAR analysis. Artech House.

Mgm (2024). Radar meteorolojisi. https://www.mgm.gov.tr/genel/meteorolojiradarlari.aspx?s=doppler. Accessed: 18.04.2024.

Libelium (2024). IoT products. https://www.libelium.com/iot-products/. Accessed: 18.04.2024.

Libelium (2015). Calibrated air quality sensors for smart cities.

https://www.libelium.com/libeliumworld/calibrated-air-quality-gas-dust-particle-matter-pm10-smart-cities/. Accessed: 18.04.2024.

DJI (2023). U10 methane detector. https://enterprise.dji.com/ecosystem/u10-methane. Accessed: 23.04.2024.

Unmanned Systems Technology (2024). TriSonica mini wind and weather sensor.

https://www.unmannedsystemstechnology.com/company/licor/trisonica-mini-wind-and-weather-sensor/. Accessed: 21.04.2024.

Ulvi, A., Yakar, M., Yiğit, A. Y., & Kaya, Y. (2020). İHA ve yersel fotogrametrik teknikler kullanarak Aksaray Kızıl Kilise’nin 3 boyutlu nokta bulutu ve modelinin üretilmesi. Geomatik Dergisi, 5(1), 22-30.

https://doi.org/10.29128/geomatik.560179

Alptekin, A., & Yakar, M. (2021). 3D model of Üçayak Ruins obtained from point clouds. Mersin Photogrammetry Journal, 3(2), 37-40. https://doi.org/10.53093/mephoj.939079

Mirdan, O., & Yakar, M. (2017). Tarihi eserlerin insansız hava aracı ile modellenmesinde karşılaşılan sorunlar. Geomatik, 2(3), 118-125. https://doi.org/10.29128/geomatik.306914

Karataş, L., Alptekin, A., & Yakar, M. (2022). Detection and documentation of stone material deterioration in historical masonry structures using UAV photogrammetry: A case study of Mersin Aba Mausoleum. Advanced UAV, 2(2), 51-64.

Karataş, L., Alptekin, A., & Yakar, M. (2023). Material analysis for restoration application: a case study of the world’s first university Mor Yakup Church in Nusaybin, Mardin. Heritage Science, 11(1), 88. https://doi.org/10.1186/s40494-023-00935-2

Jiao, Z., Zhang, Y., Xin, J., Mu, L., Yi, Y., Liu, H., & Liu, D. (2019). A deep learning based forest fire detection approach using UAV and Yolov3. In 2019 1st International Conference on Industrial Artificial Intelligence (IAI) (pp. 1-5). IEEE. https://doi.org/10.1109/ICIAI.2019.8850815

Wang, Y., Yang, X., Zhang, L., Fan, X., Ye, Q., & Fu, L. (2023). Individual tree segmentation and tree-counting using supervised clustering. Computers and Electronics in Agriculture, 205, 107629.

https://doi.org/10.1016/j.compag.2023.107629

Kınalı, M., & Çalışkan, E. (2022). Use of unmanned aerial vehicles in forest road projects. Bartın Orman Fakültesi Dergisi, 24(3), 1-1. https://doi.org/10.24011/barofd.1073229

Tükenmez, F. (2021). Harita mühendisliğinde İHA ile karayolu projelendirme. Türkiye Fotogrametri Dergisi, 3 (2), 53-61. DOI: 10.53030/tufod.1003187. https://doi.org/10.53030/tufod.1003187

Tutuş, Y. (2018). Tanıtım film yapım sürecinde insansız hava araçlarının kullanımı: Elazığ İline yönelik örnek bir uygulama/usage of the drons at promotional film production: an example practise in Elazığ. Yüksek Lisans Tezi, Fırat Üniversitesi, Sosyal Bilimler Enstitüsü, Elazığ, 74s.

Vaned (2022). Real estate drone photography: a comprehensive guide. https://www.vaned.com/blog/real-estate-drone-photography/. Accessed: 30.09.2022.

Zhou, R., Wen, Z., & Su, H. (2022). Automatic recognition of earth rock embankment leakage based on UAV passive infrared thermography and deep learning. ISPRS Journal of Photogrammetry and Remote Sensing, 191, 85-104. https://doi.org/10.1016/j.isprsjprs.2022.07.009

Silvagni, M., Tonoli, A., Zenerino, E., & Chiaberge, M. (2017). Multipurpose UAV for search and rescue operations in mountain avalanche events. Geomatics, Natural Hazards and Risk, 8(1), 18-33.

https://doi.org/10.1080/19475705.2016.1238852

Quebrajo, L., Perez-Ruiz, M., Pérez-Urrestarazu, L., Martínez, G., & Egea, G. (2018). Linking thermal imaging and soil remote sensing to enhance irrigation management of sugar beet. Biosystems Engineering, 165, 77–87. https://doi.org/10.1016/j.biosystemseng.2017.08.013

Zhang, J., Jung, J., Sohn, G., & Cohen, M. (2015). Thermal infrared inspection of roof insulation using unmanned aerial vehicles. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(1), 381. https://doi.org/10.5194/isprsarchives-XL-1-W4-381-2015

Liao, K-C., & Lu, J-H. (2021). Using UAV to detect solar module fault conditions of a solar power farm with IR and visual image analysis. Applied Sciences. 2021, 11(4), 1835. https://doi.org/10.3390/app11041835.

Asad, M., Aidaros, O. A., Beg, R., Dhahri, M. A., Neyadi, S. A., & Hussein, M. (2017). Development of autonomous drone for gas sensing application. 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA), pp.1-6. https://doi.org/10.1109/ICECTA.2017.8252068

Reinecke, M., & Prinsloo, T. (2017). The influence of drone monitoring on crop health and harvest size. IEEE 1st International Conference in Next Generation Computing Applications (NextComp), 2017 (pp. 5-10). https://doi.org/10.1109/NEXTCOMP.2017.8016168

Tang, Z., Jin, Y., Alsina, M. M., McElrone, A. J., Bambach, N., & Kustas, W. P. (2022). Vine water status mapping with multispectral UAV imagery and machine learning. Irrigation Science, 40(4), 715-730. https://doi.org/10.1007/s00271-022-00788-w

Song, B., & Park, K. (2020). Detection of aquatic plants using multispectral UAV imagery and vegetation index. Remote Sensing, 12(3), 387. https://doi.org/10.3390/rs12030387

Yang, B., Ali, F., Yin, P., Yang, T., Yu, Y., Li, S., & Liu, X. (2021). Approaches for exploration of improving multi-slice mapping via forwarding intersection based on images of UAV oblique photogrammetry. Computers & Electrical Engineering, 92, 107135. https://doi.org/10.1016/j.compeleceng.2021.107135

Zhou, T., Lv, L., Liu, J., & Wan, J. (2021). Application of UAV oblique photography in real scene 3d modeling. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 413-418. https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-413-2021

Toschi, I., Remondino, F., Rothe, R., & Klimek, K. (2018). Combining airborne oblique camera and LiDAR sensors: Investigation and new perspectives. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 437-444. https://doi.org/10.5194/isprs-archives-XLII-1-437-2018

Hu, T., Sun, X., Su, Y., Guan, H., Sun, Q., Kelly, M., & Guo, Q. (2020). Development and performance evaluation of a very low-cost UAV-LiDAR system for forestry applications. Remote Sensing, 13(1), 77. https://doi.org/10.3390/rs13010077

Cao, L., Liu, H., Fu, X., Zhang, Z., Shen, X., & Ruan, H. (2019). Comparison of UAV LiDAR and digital aerial photogrammetry point clouds for estimating forest structural attributes in subtropical planted forests. Forests, 10(2), 145. https://doi.org/10.3390/f10020145

Li, T., Zhang, B., Xiao, W., Cheng, X., Li, Z., & Zhao, J. (2020). UAV-based photogrammetry and LiDAR for the characterization of ice morphology evolution. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 4188-4199. https://doi.org/10.1109/JSTARS.2020.3010069

Curcio, A. C., Peralta, G., Aranda, M., & Barbero, L. (2022). Evaluating the performance of high spatial resolution UAV-photogrammetry and UAV-Lidar for salt marshes: The Cádiz Bay study case. Remote Sensing, 14(15), 3582. https://doi.org/10.3390/rs14153582

Bandini, F., Sunding, T. P., Linde, J., Smith, O., Jensen, I. K., Köppl, C. J., Butts, M., & Bauer-Gottwein, P. (2020). Unmanned Aerial System (UAS) observations of water surface elevation in a small stream: comparison of radar altimetry, LIDAR and photogrammetry techniques. Remote Sensing of Environment, 237, 111487. https://doi.org/10.1016/j.rse.2019.111487

Abushakra, F., Jeong, N., Elluru, D. N., Awasthi, A. K., Kolpuke, S., Luong, T., Reyhanigalangashi, O., Taylor, D., & Gogineni, S. P. (2021). A miniaturized ultra-wideband radar for UAV remote sensing applications. IEEE Microwave and Wireless Components Letters, 32(3), 198-201. https://doi.org/10.1109/LMWC.2021.3129153

Honkavaara, E., Eskelinen, M. A., Pölönen, I., Saari, H., Ojanen, H., Mannila, R., Holmlund, C., Hakkala, T., Litkey, P., Rosnell, T., Viljanen, N., & Pulkkanen, M. (2016). Remote sensing of 3-D geometry and surface moisture of a peat production area using hyperspectral frame cameras in visible to short-wave infrared spectral ranges onboard a small unmanned airborne vehicle (UAV). IEEE Transactions on Geoscience and Remote Sensing, 54, (9), 5440-5454. https://doi.org/10.1109/TGRS.2016.2565471

Jackisch, R., Lorenz, S., Zimmermann, R., Möckel, R., & Gloaguen, R. (2018). Drone-borne hyperspectral monitoring of acid mine drainage: an example from the Sokolov Lignite District. Remote Sensing, 10(3), 385. https://doi.org/10.3390/rs10030385

Kirsch, M., Lorenz, S., Zimmermann, R., Tusa, L., Möckel, R., Hödl, P., Booysen, R., Khodadadzadeh, M., & Gloaguen, R. (2018). Integration of terrestrial and drone-borne hyperspectral and photogrammetric sensing methods for exploration mapping and mining monitoring. Remote Sensing, 10(9), 1366.

https://doi.org/10.3390/rs10091366

Mahmood, A. B., Gregori, S., Runciman, J., Warbick, J., Baskar, H., & Badr, M. (2022, September). UAV based smart bird control using convolutional neural networks. In 2022 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 89-94. IEEE. https://doi.org/10.1109/CCECE49351.2022.9918345