Vol. 4 No. 1 (2024)
Articles

Time Series Analysis of Turkish National Sea Level Monitoring System (TUDES) Data for Amasra Station Example

Ahsen Çelen
Ondokuz Mayıs University

Published 2024-03-31

Keywords

  • Time series analysis,
  • Sea level,
  • TUDES,
  • Minitab

How to Cite

Çelen, A., & Şişman, Y. (2024). Time Series Analysis of Turkish National Sea Level Monitoring System (TUDES) Data for Amasra Station Example . Advanced Geomatics, 4(1), 37–47. Retrieved from https://publish.mersin.edu.tr/index.php/geomatics/article/view/1359

Abstract

The observation and prediction of sea level are crucial for various reasons including the vertical datum determination, crustal movement forecasting, oceanographic modeling, and coastal infrastructure planning. In Turkey, a sea level monitoring system has been established by the General Directorate of Mapping and aims to measure sea level. Through the Turkish National Sea Level Monitoring System (TUDES), sea level is monitored using data collected at 20 tide gauge stations at 15-minute intervals. Time series analysis is considered a highly suitable modeling and forecasting method for data that is periodically measured. In this study, time series analysis models including ARIMA, SARIMA, and Holt-Winter's methods were applied using data from the Amasra tide gauge station within the TUDES for the year 2019. Additionally, a prediction for January 2020 at the same station was performed. The results were compared with the measured tide gauge data to assess the performance of the models. Evaluation criteria included the Mean Absolute Percentage Error (MAPE) for the Holt-Winter's method and the corrected Akaike Information Criteria (AICc) for the ARIMA and SARIMA models. The SARIMA(3,0,0)(0,2,2) model with an AICc value of -1307.83, indicating a seasonality of 12, was observed to be the best-performing model.

References

  1. Afrifa-Yamoah, E., Saeed, B. I., & Karim, A. (2016). Sarima modelling and forecasting of monthly rainfall in the Brong Ahafo Region of Ghana. World Environment, 6(1), 1-9.
  2. Al-Hafid, M. S., & Hussein Al-maamary, G. (2012). Short term electrical load forecasting using holt-winters method. Al-Rafidain Engineering Journal (AREJ), 20(6), 15-22.
  3. Balogun, A. L., & Adebisi, N. (2021). Sea level prediction using ARIMA, SVR and LSTM neural network: assessing the impact of ensemble Ocean-Atmospheric processes on models’ accuracy. Geomatics, Natural Hazards and Risk, 12(1), 653-674.
  4. Bermúdez, J. D., Segura, J. V., & Vercher, E. (2010). Bayesian forecasting with the Holt–Winters model. Journal of the Operational Research Society, 61(1), 164-171.
  5. Bisgaard, S., & Kulahci, M. (2011). Time series analysis and forecasting by example. John Wiley & Sons.
  6. Blewitt, G., Altamimi, Z., Davis, J., Gross, R., Kuo, C. Y., Lemoine, F. G., ... & Zerbini, S. (2010). Geodetic observations and global reference frame contributions to understanding sea-level rise and variability. Understanding sea-level rise and variability, 256-284.
  7. Cryer, J. D., Chan, K. S., & Kung-Sik.. Chan. (2008). Time series analysis: with applications in R (Vol. 2). New York: Springer. doi: 10.1007/978-0-387-75959-3
  8. Cryer, J. D. (1986). Time Series Analysis. Retrieved from https://books.google.com.tr/books ?id=HVUZAQAAIAAJ
  9. Djakaria, I., & Saleh, S. E. (2021, May). Covid-19 forecast using Holt-Winters exponential smoothing. In Journal of physics: conference series (Vol. 1882, No. 1, p. 012033). IOP Publishing.
  10. Djauhari, M. A., Asrah, N. M., Li, L. S., Djakaria, I., Badruzzaman, S. T. A. I. K., & KM10, J. R. S. (2020). Forecasting model of electricity consumption in malaysia: A geometric Brownian motion approach. Solid State Technology, 63(3), 40-46.
  11. Drewes, H. (2009). Reference systems, reference frames, and the geodetic datum. In Observing our changing Earth (pp. 3-9). Springer Berlin Heidelberg.
  12. Wibowo, D. S., Adytia, D., & Saepudin, D. (2020, August). Prediction of tide level by using holtz-winters exponential smoothing: Case study in cilacap bay. In 2020 International Conference on Data Science and Its Applications (ICoDSA) (pp. 1-5). IEEE.
  13. Erden, C. (2020). Zaman serisi analizleri. [PDF document]. Lecture Notes.
  14. European Global Ocean Observing System. (n.d.). Overview. UNESCO.
  15. Farhan, J., & Ong, G. P. (2018). Forecasting seasonal container throughput at international ports using SARIMA models. Maritime Economics & Logistics, 20, 131-148.
  16. Fernandez, F. R. Q., Montero, N. B., Po III, R. B., Addawe, R. C., & Diza, H. M. R. (2018). Forecasting Manila South Harbor Mean Sea Level Using Seasonal ARIMA Models. Journal of Technology Management and Business, 5(1).
  17. Gardner Jr, E. S. (2006). Exponential smoothing: The state of the art—Part II. International journal of forecasting, 22(4), 637-666.
  18. Global Ocean Observing System. (n.d.). Who we are. UNESCO.
  19. https://www.goosocean.org/
  20. Global Sea Level Observing System (n.d.). UNESCO.
  21. https://gloss-sealevel.org/
  22. Jekeli, C. (2016). Geometric Reference Systems in Geodesy (2016 edition).
  23. Kara, T. (2009). Sabit GPS istasyonlarında zaman serileri analizi (Master's thesis, Fen Bilimleri Enstitüsü).
  24. Lindsey R. (2022, 19 Nisan). Climate change: global sea level. National Oceanic and Atmospheric Administration. https://www.climate.gov/news-features/understanding-climate/climate-change-global-sea-level
  25. Makatjane, K., & Moroke, N. (2016). Comparative study of holt-winters triple exponential smoothing and seasonal Arima: forecasting short term seasonal car sales in South Africa. Makatjane KD, Moroke ND.
  26. Minitab, LLC. (2021). Minitab. Retrieved from https://support.minitab.com/en-us/minitab/21/ help-and-how-to/statistical- modeling/doe/how-to/factorial/analyze-binary-response/methods-and-formulas/model-summary/
  27. Manual, F. P. (2010). National Oceanic and Atmospheric Administration. Office of Coast Survey, 154-155. https://www.noaa.gov/
  28. Neumann, B., Vafeidis, A. T., Zimmermann, J., & Nicholls, R. J. (2015). Future coastal population growth and exposure to sea-level rise and coastal flooding-a global assessment. PloS one, 10(3), e0118571.
  29. Panda, M. (2020). Application of ARIMA and Holt-Winters forecasting model to predict the spreading of COVID-19 for India and its states. medRxiv, 2020-07.
  30. Permanent Service for Mean Sea Level. (n.d.). National Oceanography Centre. Turkish Naval Forces Office of Navigation, Hydrography and Oceanography. (n.d.).
  31. https://www.shodb.gov.tr/
  32. Sansò, F., & Sideris, M. G. (Eds.). (2013). Geoid determination: theory and methods. Springer Science & Business Media.
  33. Bezerra, A. K. L., & Santos, É. M. C. (2020). Prediction the daily number of confirmed cases of COVID-19 in Sudan with ARIMA and Holt Winter exponential smoothing. International Journal of Development Research, 10(08), 39408-39413.
  34. Shumway, R. H., Stoffer, D. S., & Stoffer, D. S. (2000). Time series analysis and its applications (Vol. 3). New York: springer.
  35. Srivastava, P. K., Islam, T., Singh, S. K., Petropoulos, G. P., Gupta, M., & Dai, Q. (2016). Forecasting Arabian Sea level rise using exponential smoothing state space models and ARIMA from TOPEX and Jason satellite radar altimeter data. Meteorological applications, 23(4), 633-639.
  36. Sun, Q., Wan, J., & Liu, S. (2020). Estimation of sea level variability in the China Sea and its vicinity using the SARIMA and LSTM models. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 3317-3326.
  37. Sweet, W. V., Kopp, R. E., Weaver, C. P., Obeysekera, J., Horton, R. M., Thieler, E. R., & Zervas, C. (2017). Global and regional sea level rise scenarios for the United States (No. CO-OPS 083).
  38. Torge, W., Müller, J., & Pail, R. (2023). Geodesy. Retrieved from https://books.google.com.tr/books? id=_4q0EAAAQBAJ
  39. Türkiye Ulusal Deniz Seviyesi İzleme Sistemi. (t.y.). Deniz seviyesi gözlemleri. Harita Genel Müdürlüğü. https://tudes.harita.gov.tr/Portal /Index/32?lang=tr/Deniz%20Seviyesi%20G%C3%Gözlemleri.
  40. Vanícek, P., Krakiwsky, E.J. (2015). Geodesy: The concepts (Revised 2. Edition). North-Holland, Amsterdam. Elsevier.
  41. Vaziri, M. (1997). Predicting Caspian Sea surface water level by ANN and ARIMA models. Journal of waterway, port, coastal, and ocean engineering, 123(4), 158-162.