Vol. 3 No. 1 (2023)
Articles

Analysis of 3D Laser Scanning Data of Farabi Mosque Using Various Softwaren

Veli Akarsu
Zonguldak

Published 2023-03-31

Keywords

  • Farabi Mosque,
  • Terrestrial Laser Scanning,
  • Local Session Stations,
  • Point Cloud,
  • Area and Volume,
  • Calculations
  • ...More
    Less

How to Cite

Nazari, S. W., Akarsu, V., & Yakar, M. (2023). Analysis of 3D Laser Scanning Data of Farabi Mosque Using Various Softwaren . Advanced LiDAR, 3(1), 22–34. Retrieved from https://publish.mersin.edu.tr/index.php/lidar/article/view/975

Abstract

Three-dimensional laser scanners, which offer an alternative solution to traditional measurement methods, have enabled geomatics engineers to have much higher confidence in the accuracy of their measurements. When high-resolution data used in many different measurement applications, including 2D and 3D drawings, calculations such as area and volume calculations, and topographic measurements are evaluated, it is understood that the resolution and efficiency provided by traditional measurement methods are far inferior. Obtaining data about objects and gaining information about objects by evaluating this data in a computer environment, obtaining 3D images of objects one-to-one is an important issue today. As a result of the development of computer technology and laser scanning systems over time, Terresterial Laser Scanners (TLS) have rapidly begun to be used today. With the TLSs, the 3D geometric and visual information of objects can be obtained accurately, quickly, one-to-one and at low cost. In this study, the 3D model of the exterior of Farabi Mosque located on the Farabi campus of Bülent Ecevit University was obtained and evaluated in different softwares. After a successful merging of the data model, due to the limited functions of Faro Scene 2019 software, area calculation, mesh creation, and volume calculation operations were performed on the cloud data using Autodesk Recap 2020 V6.0, Gexcel Reconstructor 2020 V4.2.0, and Meshlab 2020.07 software, and operations were carried out on cloud data that looks close to reality.

References

  1. Abbasa, M. A.., Luha, L. C., Setana, H., Majida, Z., Chongc, A. K., Aspuria, A., Idrisa, K. M. & Ariffa, M. F. M. (2014). Terrestrial Laser Scanners Pre-Processing: Registration and Georeferencing, Jurnal Teknologi (Sciences & Engineering) 71:4
  2. Akarsu, V. (2005). Geometride Uzay, Düşey ve Yatay Açılar Arasındaki Fonksiyonelİlişki, Selcuk-Teknik Online Dergi, 4(3), 134-142.
  3. Akarsu, V., Nazari, S. W. (2020). Yersel Lazer Tarama Teknolojisi İle Heyelanların İzlenmesi, Yerbilimleri Problemlerine Model Yaklaşımlar, Editör: Dr. Fatih Sünbül, 3-36, İKSAD, ISBN:978-625-9897-99-0, Ankara, Turkey.
  4. Alptekin, A. & Yakar, M. (2021). Lazer Tarayıcının Jeolojik Olayların Modellenmesinde Kullanımı. Türkiye Lidar Dergisi, 3 (2), 71-75. DOI: 10.51946/melid.1018197
  5. Alptekin, A., Çelik, M. Ö., Doğan, Y. & Yakar, M. (2022, February). Illustrating of a landslide site with photogrammetric and LIDAR methods. In Research Developments in Geotechnics, Geo-Informatics and Remote Sensing: Proceedings of the 2nd Springer Conference of the Arabian Journal of Geosciences (CAJG-2), Tunisia 2019 (pp. 303-305). Cham: Springer International Publishing.
  6. Altuntaş, A. (2017). Yersel Lazer Tarayıcı Nokta Bulutlarının Birleştirilmesi ve Jeodezik Koordinat Sistemine Dönüştürülmesi: Literatür Araştırması, Selçuk-Teknik Dergisi
  7. Becerik-Gerber, B., Jazizadeh, F., Kavulya, G. & Calis, G. (2011). Assessment of target types and layouts in 3D laser scanning for registration accuracy. Automation in Construction
  8. Bi, Z. & Wang, L. (2010). Advances in 3D data acquisition and processing for industrial applications. Robotics and Computer-Integrated Manufacturing
  9. Brenner, C. (2007). Interpretation terrestrischer Scandaten. In: Proceedings of “Terrestrisches Laserscanning (TLS 2007), Beiträge zum 74. DVW Seminar”
  10. Chetverikov, D., Stepanov, D., Krsek, P. (2005), Robust Euclidean alignment of 3D point sets:the trimmed iterative closest point algorithm, Image and Vision Computing
  11. Danson, F., Gaulton, R., Armitage, R. P., Disney, M. I., Gunawan, O., Lewis, P., Pearson, G. & Ramirez, A. F.. (2014). Developing a dual-wavelength full- laser scanner to characterize forest canopy structure. Agric For Meteorol 198.
  12. Fröhlich, C. & Mettenleiter, M. (2004). Terrestrial laser scanning-new perspectives in 3D surveying, Germany
  13. Gümüş, M. (2010). YL Tez, Yersel Lazer Tarayıcıların Deformasyon Ölçmelerinde Kullanılabilirliği Üzerine bir Çalişma, Selçuk Üniversitesi, Jedodezi ve Fotogrametri Mühendisliği
  14. Kanun, E. & Metin, A. (2021). Yersel Lazer Tarama Tekniği Kullanarak Ağzıkara Han’ın 3 Boyutlu Nokta Bulutunun Elde Edilmesi. Türkiye Lidar Dergisi, 3(2), 58-64.
  15. Karabacak, A. & Yakar, M. (2022). Giyilebilir Mobil LİDAR Kullanım Alanları ve Cambazlı Kilisesinin 3B Modellemesi. Türkiye Lidar Dergisi, 4 (2), 37-52. DOI: 10.51946/melid.1146383
  16. Karataş, L., Alptekin, A. & Yakar, M. (2022). Analytical Documentation of Stone Material Deteriorations on Facades with Terrestrial Laser Scanning and Photogrammetric Methods: Case Study of Şanlıurfa Kışla Mosque. Advanced LiDAR, 2(2), 36–47.
  17. Karataş, L., Alptekin, A. & Yakar, M. (2022). Creating Architectural Surveys of Traditional Buildings with the Help of Terrestrial Laser Scanning Method (TLS) and Orthophotos: Historical Diyarbakır Sur Mansion. Advanced LiDAR, 2(2), 54–63.
  18. Kaya, Y., Yiğit, A. Y. Ulvi, A. & Yakar, M. (2021). Arkeolojik alanların dokümantasyonununda fotogrametrik tekniklerinin doğruluklarının karşılaştırmalı analizi: Konya Yunuslar Örneği. Harita Dergisi, 165, 57-72.
  19. Kedzierski, M., Walczykowski, P. & Fryskowska, A. (2009), Application Of Terrestrıal Laser Scannıng In Assessment Of Hydrotechnıc Objects Conditıon, Asprs 2009 Annual Conference Baltimore, Maryland
  20. Korumaz, A. G., Korumaz, M., Dulgerlera, O. N., Karasaka, L. & Yıldız, F. (2010). Evaluation of laser scanner performance in documentation of historical and architectural ruins, a case study in Konya. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(5), 361-366.
  21. Lindskog, E., Berglund, J., Vallhagen, J. & Johansson, B. (2013). Visualization support for virtual redesign of manufacturing systems. In Procedia CIRP 7; 29-31 May, 2013
  22. Mırdan, O. F. (2018). İç ve Dış Mekanların Nokta Bulutlarının Birleştirilmesi, Yüksek Lisans Tezi, Selçuk Üniversitesi, Harita Mühendisliği Anabilim Dalı
  23. Nazari, S. W. (2020). Yersel Lazer Tarayıcılar: Geomatik Mühendisliğinde Uygulama Örneği, ZBEÜ, Fen Bilimleri Enstitüsü Geomatik Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, s.111, Zonguldak, Turkey.
  24. Şasi, A. (2017). Photogrammetric modelling of sakahane masjid using an unmanned aerial vehicle. Turkish Journal of Engineering, 1(2), 82-87.
  25. Scaioni, M. (2002). Independent model triangulation of terrestrial laser scanner data, The ISPRS International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciencies
  26. Scene, (2019). FARO Focus Laser Scanners, Training Workbook, Version 2019
  27. Şenol, H. I., Erdogan, S., Onal, M., Ulukavak, M., Memduhoglu, A., Mutlu, S. & Yilmaz, M. (2017). 3D Modeling of A Bazaar in Ancient Harran City Using Laser Scanning Technique. International Archives of The Photogrammetry, Remote Sensing & Spatial Information Sciences, 42.
  28. Şenol, H. İ., Memduhoglu, A., & Ulukavak, M. (2020). Multi instrumental documentation and 3D modelling of an archaeological site: a case study in Kizilkoyun Necropolis Area. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 11(3), 1241-1250.
  29. Ulvi, A., & Yiğit, A. Y. (2022). Comparison of the Wearable Mobile Laser Scanner (WMLS) with Other Point Cloud Data Collection Methods in Cultural Heritage: A Case Study of Diokaisareia. ACM Journal on Computing and Cultural Heritage, 15(4), 1-19.
  30. Ulvi, A., Yakar, M., Toprak, A. S. & Mutluoglu, O. (2014). Laser scanning and photogrammetric evaluation of Uzuncaburç Monumental Entrance. International Journal of Applied Mathematics Electronics and Computers, 3(1), 32-36.
  31. Vosselman, G., Maas, H.-G. (Eds.). (2010). Airborne and Terrestrial Laser Scanning, first ed. CRC Press. Boca Raton, FL.
  32. Wolf, P., DeWitt, B. & Wilkinson, B. (2014). Elements of Photogrammetry with Applications in GIS, 4th ed. McGrawHill Education.
  33. Yakar, M., Yılmaz, H. M. & Mutluoğlu, Ö. (2008). Lazer Tarama Teknolojisi ve Fotogrametrik Yöntem ile Hacim Hesabı. TÜBİTAK, Proje No: 105M179, 90s.
  34. Yakar, M., Yilmaz, H. M. & Mutluoglu, O. (2009). Comparative Evaluation of Excavation Volume by Terrestrial Laser Scanner and Total Topographic Station Based Methods. Lasers in Engineering, 19(5), 331.
  35. Yakar, M., Yılmaz, H. M. & Mutluoǧlu, Ö. (2010). Comparative evaluation of excavation volume by TLS and total topographic station-based methods. Lasers in Eng,19, 331-345
  36. Yildiz, F. & Altuntaş, F. (2009). YL Tez, Yersel Lazer Tarayıcı Nokta Bulutlarının Jeodezik Koordinat Sistemine Dönüştürülmesi, Selçuk Üniversitesi, Jedodezi ve Fotogrametri Mühendisliği Bölümü, 42075 Selçuklu
  37. Yılmaz, H. & Yakar, M. (2016). LiDAR (Light Detection and Ranging) Tarama Sistemi. Yapı Teknolojileri Elektronik Dergisi, 2 (2), 23-33.
  38. Yılmaz, H. M. & Yakar, M. (2006). Yersel lazer tarama Teknolojisi. Yapı teknolojileri Elektronik dergisi, 2(2), 43-48.