Valuation of commercial real estate in Ankara middle east industry and trade center (MEITC)

Main Article Content

Abstract

Commercial real estate is an important part of the real estate sector. In the commercial real estate market, value estimates are made with the help of the characteristics of the samples that are subject to purchase and sale, and they are used in transactions such as taxation, insurance and privatization. In this study, collective valuation processes are aimed by applying the Multiple Regression Analysis (MRA) statistical method to the commercial properties offered for sale in the Middle East Trade and Industry Center (MEITC) in Yenimahalle district of Ankara. In this direction, 31 office sales data were collected for valuation, 29 criteria affecting the value were determined, and a mathematical model was developed according to independent variables. R², Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percent Error (MAPE) were considered. Their results were found as 0.938; 0.00; 0.04; 0.42 respectively. Based on these values, it has been concluded that the regression method, which is seen to produce high accuracy, can be used in commercial real estate valuation. Geostatistical analyzes were made using market values and estimated values, and value maps were produced in the Geographical Information Systems (GIS) environment.

Article Details

How to Cite
Yüksel, G. ., Fatma Bünyan Ünel, & Ulvi, A. . (2022). Valuation of commercial real estate in Ankara middle east industry and trade center (MEITC). Advanced GIS, 2(2), 70–78. Retrieved from https://publish.mersin.edu.tr/index.php/agis/article/view/690
Section
Articles

References

Akgüngör, A. P., & Doğan, E. (2010). Farklı yöntemler kullanılarak geliştirilen trafik kaza tahmin modelleri ve analizi (in Turkish). International Journal of Engineering Research and Development, 2(1), 16-22.

Altunışık, R., Coşkun, R., Bayraktaroğlu, S., & Yıldırım, E. (2010). Sosyal Bilimlerde Araştırma Yöntemleri SPSS Uygulamalı (in Turikish). Sakarya Yayıncılık.

Aslay, F., & Özen, Ü. (2013). Estimating soil temperature with artificial neural networks using meteorological parameters. Journal of Polytechnic, 16(4),139-145. https://doi.org/10.2339/2013.16.4

Bayyurt, N. (2007). İşletmelerde performans değerlendirmenin önemi ve performans göstergeleri arasındaki ilişkiler. Journal of Social Policy Conferences (in Turkish). 53, 577-592.

Chatterjee, S., & Hadi, A. S. (2015). Regression analysis by example. John Wiley & Sons.

Cˇeh, M., Kilibarda, M., Lisec, A., & Bajat, B. (2018). Estimating the performance of random forest versus multiple regression for predicting prices of the apartments, ISPRS International Journal of Geo-Information7(5), 168. https://doi.org/10.3390/ijgi7050168

Clayton, J., Ling, D. C., & Naranjo, A. (2009). Commercial real estate valuation: Fundamentals versus ınvestor sentiment. The Journal of Real Estate Finance and Economics, 38:5–37 https://doi.org/10.1007/s11146-008-9130-6

Demirel, S. B., Reyhan, O., Atasever, Ü. H., & Kesikoğlu, M. H (2016). The Using of Artificial Neural Networks in Flat Type Real Estate Valuation. UZAL-CBS 2016, Adana, Turkey.

Dimopoulos, T., & Bakas, N. (2019). Sensitivity analysis of machine learning models for the mass appraisal of real estate. Case Study of residential units in Nicosia, Cyprus. Remote Sensing, 11(24), 3047. https://doi.org/10.3390/rs11243047

Doldur, M., & Alkan, R. M. (2021). Producing GIS-based land value maps by using nominal valuation method: Case study in Avanos/Nevşehir 21,045502, 846-863. https://doi.org/10.35414/akufemubid.888502

Eboy, O. V., & Jurah, A. K. A. (2021). Modeling the commercial property value using ordinary least squared (OLS); A case study of Putatan, Sabah and Limbang, Sarawak. Malaysian Journal of Social Sciences and Humanities (MJSSH), 6(3) , 290 – 296. https://doi.org/10.47405/mjssh.v6i3.686

Erbil, E. H. (2014). Taşınmaz mal değerleme amaçlı coğrafi bilgi sistemi tasarımı (in Turkish). UZAL-CBS, İstanbul, Turkey.

Erdem, N. (2017). Toplu (Küme) değerleme uygulama örnekleri ve ülkemiz için öneriler. TMMOB Harita ve Kadastro Mühendisleri Odası, 16. Türkiye Harita Bilimsel ve Teknik Kurultayı (in Turkish), Ankara, Turkey.

Erdoğan, A., Günel, G., & Kılcı, A. (2007). Ankara in History. Ankara Metropolitan Municipality, 8(2), 38-45.

Esen, Y., & Tokgöz, H. (2021). A different perspective to real estate valuation with fuzzy logic modeling. Journal of Engineering Sciences and Design, 9(4), 1155-1165. https://doi.org/10.21923/jesd.876523

Fisher, J. D., Geltner, D. M., & Webb, R. B. (1994). Value ındexes of commercial real estate-a comparison of index construction methods. Journal of Real Estate Finance and Economics, 9(2), 137-164. https://doi.org/10.1007/BF01099972

Fisher, J. D., & Rutledge, S. R. (2021). The impact of hurricanes on the value of commercial real estate. Business Economics, 56:129–145 https://doi.org/10.1057/s11369-021-00212-9

Ghysels, E., Plazzi, A., & Volkanov, R. (2007). Valutation in US commercial real estate. European Financial Management, 13,3, 2007, 472–497. https://doi.org/10.1111/j.1468-036X.2007.00369.x

Glantz, S. A. (2012). Confidence Intervals. In: Primer of biostatistics. McGraw-Hill Medical.

Hajime, S., Yoshiki, Y., & Morito, T. (2013). Automatic selection of a spatial weight matrix in spatial econometrics: Application to a spatial hedonic approach. Regional Science and Urban Economics, 43, 429-444. https://doi.org/10.1016/j.regsciurbeco.2013.02.002

Hoesli, M., & Malle, R. (2021). Commercial real estate prices and COVID-19. Journal of European Real Estate Research, 15(2), 295-306.

Karasar, N. (2007). Bilimsel araştırma yöntemi: kavramlar, ilkeler, teknikler (in Turkish). Nobel Yayın Dağıtım.

Kartal, U., & Corum, A. (2020). Regression equation determining house price: Case study in Maltepe. International Journal of Advances in Engineering and Pure Sciences, 1, 57-67. https://doi.org/10.7240/jeps.605719

Kato, T. (2012). Prediction in the lognormal regression model with spatial error dependence. Journal of Housing Economics, 21(1), 66-76. https://doi.org/10.1016/j.jhe.2012.01.003

Lau, K. M., & Li, S. M. (2006). Commercial Housing Affordability in Beijing, 1992-2002. Habitat International, 30(3), 614-627. https://doi.org/10.1016/j.habitatint.2005.02.004

Millington, A. F. (2001). An Introduction to property valuation (5th ed.). Estate Gazette.

Nişancı, R. (2005). The production of pixel based urban land value maps with nominal valuation method using GIS (Publication No. 35893) [Doctoral Thesis, Karadeniz Technical University]. YÖK National Thesis Center.

Özdağoğlu, A. (2014). The Effects of the normalization methods to multi criteria decision making process– moora method review. Ege Academic Review, 14(2), 283-294.

Özkan, G., & Yalpır, Ş. (2005). Valuation and economic view to real estate. 10. Türkiye Harita Bilimsel ve Teknik Kurultayı (in Turkish), Ankara, Turkey.

Pagourtzi, E., Assimakopoulos, V., Hatzichristos, T., & French, N. (2003). Practice briefing real estate appraisal: A review of valuation methods. Journal of Property Investment & Finance, 21(4), 383-401. https://doi.org/10.1108/14635780310483656

Patton, M. Q. (2014). Qualitative research & evaluation methods: Integrating theory and practice. Sage publications.

Report. (2018). Ankara Provincial Industry Status Report (Ankara İl Sanayi Durum Raporu-in Turkish), Ankara.

Şişman, A., & Şişman, Y. (2016). Konutun değerine etki eden faktörlerin araştırılması (in turkish). International symposium on Engineering, Artifical lntelligence & Applications-lSEAlA2016, Girne, KKTC.

Tabar M E, Başara A C & Şişman Y (2021). Housing Valuation Study in Tokat Province with Multiple Regression and Artificial Neural Networks. Turkish Journal of Land Management 3(1),01-07. https://doi.org/10.51765/tayod.832227

Tanaka, H., & Shibasaki, R. (2001). Creation of Spatial Information Database for Appraisingthe Real Estate. 22nd Assian Conference on Remote Sensing, Singapore.

Tanrıvermiş, H. (2018). Gayrimenkul değerleme esasları. Sermaye Piyasası Lisanslama ve Sicil ve Eğitim Kuruluşu yayınları (in Turkish), 502, İstanbul.

Tecim, V., & Çağatay, U. (2006). Coğrafi bilgi sistemi tabanlı taşınmaz değerleme çalışmaları vasıtasıyla taşınmaz değer haritalarının oluşturulması için model bir çalışma. 4. Coğrafi Bilgi Sistemleri Bilişim Günleri (in Turkish), İstanbul, Turkey.

TUIK. (2021). Address based population registration system address results (Adrese dayalı nüfus kayıt sistemi adres sonuçları). TUJK. Retrieved April 22, 2021, from https://biruni.tuik.gov.tr/medas/?kn=64&locale=tr

Türeoğlu, Z. E. (2008). Real estate appraisal in the housing financing system (Publication No. 219621) [Master Thesis, Marmara University]. YÖK National Thesis Center.

Ünel, F. B. (2017). Development of geography data model for criteria of real estate valuation (Publication No. 485118) [Doctoral Thesis, Selçuk University]. YÖK National Thesis Center.

Yalpır, Ş., & Tezel, G. (2013). Konut değerlerinin tahmini için SVM ve MRA yöntemlerinin karşılaştırması, 6. Mühendislik ve Teknoloji Sempozyumu (in Turkish), Çankaya University, Ankara, Turkey.

Yomralioglu, T. (1993). A nominal asset value based approach for land read justment and its ımplementation using geographical ınformation systems. [Doctoral Thesis, University of Newcastleupon Tyne]. , Department of Surveying. https://web.itu.edu.tr/tahsin/PAPERBOX/T01.pdf

Yomralıoğlu, T. (1997). Taşınmazların değerlendirilmesi ve kat mülkiyeti mevzuatı. JEFOD-Kentsel Alan Düzenlemelerinde İmar Planı Uygulama Teknikleri (in Turkish), Trabzon, 153-169.

Zhang, R., Du, Q., Geng, J., Liu, B., Huang, Y. (2014). An improved spatial error model for the mass appraisal of commercial real estate based on spatial analysis: Shenzhen as a casse study. Habitat International, 46, 196-205. https://doi.org/10.1016/j.habitatint.2014.12.001

Zurada, J., Levitan, A. S., & Guan, J. A. (2011). A comparison of regression and artificial intelligence methods in a mass appraisal context. Journal of real estate research, 33(3), 349-388. https://doi.org/10.1080/10835547.2011.12091311