Identifying impervious surfaces for rainwater harvesting feasibility using unmanned aerial vehicle imagery and machine learning classification
Main Article Content
Abstract
As global demand for clean, reliable water sources continues to increase amid a growing population and the impacts of climate change, effective water conservation and collection methods are more important than ever. Rainwater harvesting has long been a reliable technique for capturing and preserving water, and recent advances in geographic information systems (GIS), unmanned aerial vehicle (UAV) remote sensing, and machine learning (ML) image classification have significantly improved our ability to accurately assess the potential for rainwater harvesting. This study leveraged these technologies to evaluate the feasibility of rainwater harvesting at the Osmanbey Campus of Harran University, using UAV imagery and ML classification techniques to identify suitable surfaces for collection. The results showed that it is possible to irrigate a grass area of 4417 square meters daily for a year using the potential harvested rainwater in the study area, demonstrating the significant potential of rainwater harvesting as a sustainable water source for irrigation purposes.
Article Details
References
Alparslan, N., Tanık, A., & Dölgen, D. (2008). Water management problems and suggestions in Turkey (Türkiye’de su yönetimi sorunlar ve öneriler-in Turkish). TÜSİAD Yayın.
Boers, T. M., & Ben-Asher, J. (1982). A review of rainwater harvesting. Agricultural Water Management, 5(2), 145–158. https://doi.org/10.1016/0378-3774(82)90003-8
Campisano, A., Butler, D., Ward, S., Burns, M. J., Friedler, E., DeBusk, K., Fisher-Jeffes, L. N., Ghisi, E., Rahman, A., Furumai, H., & Han, M. (2017). Urban rainwater harvesting systems: research, implementation and future perspectives. Water Research, 115, 195–209. https://doi.org/10.1016/j.watres.2017.02.056
DIN. (1989). Rainwater Harvesting Systems—Part 1: Planning, Installation, Operation and Maintenance.
Erdoğan, O. (2002). Irrigation system design of Kocaeli province coastal arrangement (Kocaeli ili sahil düzenlemesinin sulama sistemi projelendirilmesi-in Turkish), [Publication No. 121133) [Master’s Thesis, Istanbul University]. YÖK National Thesis Center
Eskandari, R., Mahdianpari, M., Mohammadimanesh, F., Salehi, B., Brisco, B., & Homayouni S (2020). Meta-analysis of unmanned aerial vehicle (UAV) imagery for agro-environmental monitoring using machine learning and statistical models. Remote Sensing, 12, 3511. https://doi.org/10.3390/rs12213511
Hari, D., Ramamohan Reddy, K., Vikas, K., Srinivas, N., & Vikas, G. (2018). Assessment of rainwater harvesting potential using GIS. IOP Conference Series: Materials Science and Engineering, 330(1). https://doi.org/10.1088/1757-899X/330/1/012119
Lee, D., Kim, H., & Park, J. (2021). UAV, a farm map, and machine learning technology convergence classification method of a corn cultivation area. Agronomy, 11(8). https://doi.org/10.3390/agronomy11081554
Mbilinyi, B. P., Tumbo, S. D., Mahoo, H. F., & Mkiramwinyi, F. O. (2007). GIS-based decision support system for identifying potential sites for rainwater harvesting. Physics and Chemistry of the Earth, 32(15–18), 1074–1081. https://doi.org/10.1016/j.pce.2007.07.014
Meng, B., Yang, Z., Yu, H., Qin, Y, Sun, Y., Zhang, J., Chen, J., Wang, Z., Zhang, W., Li, M., Lv, Y., & Yi, S. (2021). Mapping of Kobresia pygmaea community based on umanned aerial vehicle technology and gaofen remote sensing data in alpine meadow grassland: a case study in eastern of qinghai-tibetan plateau. Remote Sensing, 13(13), 2483. https://doi.org/10.3390/rs13132483
Mwenge Kahinda, J., Taigbenu, A. E., Sejamoholo, B. B. P., Lillie, E. S. B., & Boroto, R. J. (2009). A GIS-based decision support system for rainwater harvesting (RHADESS). Physics and Chemistry of the Earth, 34(13–16), 767–775. https://doi.org/10.1016/j.pce.2009.06.011
Niu, Y., Zhang, L., Zhang, H., Han, W., & Peng, X. (2019). Estimating above-ground biomass of maize using features derived from UAV-based RGB imagery. Remote Sensing, 11(11), 1261. https://doi.org/10.3390/rs11111261
Şahin, N. I., & Manioğlu, G. (2011). Binalarda yağmur suyunun kullanılması (in Turkish). Tesisat Mühendisliği Dergisi, 125, 21–32.
Shokati, H., Kouchakzadeh, M., & Noroozi, A. (2021). Designing of rainwater harvesting systems using drone, 14(48), 73–85. https://doi.org/10.30495/wej.2021.4590
TSMS. (2022). Turkish State Meteorological Service. MGM. Retrieved January 29, 2023, from https://www.mgm.gov.tr/?il=Sanliurfa
Wang, Y., Wang, J., Chang, S., Sun, L., An, L., Chen, Y., & Xu, J. (2021). Classification of street tree species using UAV tilt photogrammetry. Remote Sensing, 13(2), 216. https://doi.org/10.3390/rs13020216
Yiğit, A. Y., Orhan, O., & Ulvi, A. (2020). Investigation of the rainwater harvesting potential at the Mersin University, Turkey. Mersin Photogrammetry Journal, 2(2), 64–75.